504 research outputs found

    Fluid substitution in porous rocks with aligned cracks: Theory versus numerical modeling

    Get PDF
    The effect of penny-shaped cracks on the elastic properties of porous media is modeled using static finite element modeling (FEM) code. Anisotropic Gassmann theory is used to predict the effective properties of the saturated cracked media from their dry properties. There is an excellent agreement between numerical results and theory, with a small error associated with partially inequilibrated patches of fluid in the FEM. These patches of fluid result in a residual stiffness which can be subtracted from the FEM results to further improve agreement with Gassmann theory

    Finite element modelling of the effective elastic properties of partially saturated rocks

    Get PDF
    Simulation of effective physical properties from microtomographic 3D images of porous structures allows one to relate properties of rocks directly to their microstructure. A static FEM code has been previously used to estimate effective elastic properties of fully saturated monomineralic (quartz) rock under wet and dry conditions. We use the code to calculate elastic properties under partially saturated conditions. The numerical predictions are compared to the Gassmann theory combined with Wood's formula (GW) for a mixture of pore fluids, which is exact for a monomineralic macroscopically homogeneous porous medium. Results of the numerical simulations performed for two Boolean sphere pack distributions show significant deviation from the GW limit and depend on the spatial distribution of fluids. This is shown to be a numerical artefact caused by incomplete equilibration of fluid pressure, which is primarily due to insufficient spatial resolution. To investigate the effect of pore-size and pore geometry, we perform FEM simulations for a model with regular pore geometry, where all pore channels have the same size and shape. Accuracy of these simulations increases with the total cross-section area of the channels and the size of individual channels. For the case where the total cross-section of the channels is large enough (on the same order as total porosity), there is a minimum of 4 voxels per channel diameter required for adequate fluid pressure equilibration throughout the pore space. Increasing the spatial resolution of the digital models reduces the discrepancy between the simulations and theory, but unfortunately increases the memory and CPU requirements of the simulations

    Digital and experimental rock analysis of proppant injection into naturally fractured coal

    Full text link
    Proppant-laden fluid injection has been applied to many low permeability reservoirs, such as coal seams, to enhance permeability and thus production. While there are several laboratory-scale experimental studies on proppant placement in hydraulic fractures, the possible infiltration of proppant into natural fractures and its effect on overall permeability has received little attention. We study proppant injection into a naturally fractured coal sample by a combination of experimental and digital rock technologies. The sample was imaged using a helical X-ray computed tomography (micro-CT) scanner in as-received condition. Then, proppants of different size ranges were gradually injected into the sample, using a purpose-built X-ray transparent core flooding system, and the permeability was measured at different effective stresses. Subsequently, the propped sample was re-imaged and registered to the as-received image to map the internal changes. The experimental results indicated almost no permeability change of the sample after proppant injection. While proppant collection in the outlet proved passage of the proppant through the sample, observation of the sample indicated that some of the proppants were accumulated on the inlet face of the core and created a filter leading to no permeability increment. Micro-CT images confirmed that proppants were effectively placed in the sample and kept the fractures open. Numerical computation of permeability, using the digital coal sample in which accumulated proppants at the coal surface were excluded, indicated a significant increase in the sample permeability. Such an increase resulted from the opening of the fractures, particularly in the outlet region. This demonstrated the significance of proppant size selection for coal seam hydraulic fracturing. While proppants were successfully placed in the fractures, the experiment measured the permeability of the system, including proppants accumulated on the inlet, and could not effectively map the internal changes. This, therefore, needs to be considered when an experimental program for proppant injection is executed. To accurately monitor the internal changes, application of digital rock technology is recommended for such experiments

    Coronaviruses Detected in Brazilian Wild Birds Reveal Close Evolutionary Relationships with Beta- and Deltacoronaviruses Isolated From Mammals

    Get PDF
    This study showed that the most of the coronaviruses (CoVs) detected in Brazilian wild birds clustered with the mouse hepatitis virus A59 strain, belonging to the BetaCoV group. Furthermore, CoV detected in two different bird species, Amazona vinacea and Brotogeris tirica, clustered with a CoV isolated from Sparrow (SpaCoV HKU17) belonging to a monophyletic group related with the CoVs isolated from swines (PorCoV HKU15), both belonging to the DeltaCoV genus, previously unreported in South America. Considering the risk of inter-species host switching and further adaptation to new hosts, detection in bird species of CoVs closely related to mammal CoVs should warn for the potential emergence of new threatening viruses.Fundação de Amparo à Pesquisa do Estado de São Paulo (Grants 2013/03922-6 and 2011/50919-5

    Propagator Resolved Transverse Relaxation Exchange Spectroscopy

    No full text
    We use the propagator resolved transverse relaxation exchange technique to look at the movement of fluid in three different types of rock samples. The two pore model previously used to fit molecular exchange simulations to the experimental data is expanded to accommodate the three site exchange seen in two of the samples. Estimated values for pore space characteristics from the simulations were compared to values calculated from X‐Ray CT data of the samples. While discrepancies exist between the NMR and X‐Ray CT results, the molecular exchange behavior estimated from the three samples reflects well with their morphology

    On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models

    Full text link
    This paper presents an on-the-fly uniformization technique for the analysis of time-inhomogeneous Markov population models. This technique is applicable to models with infinite state spaces and unbounded rates, which are, for instance, encountered in the realm of biochemical reaction networks. To deal with the infinite state space, we dynamically maintain a finite subset of the states where most of the probability mass is located. This approach yields an underapproximation of the original, infinite system. We present experimental results to show the applicability of our technique

    Allogeneic NK cells induce the <i>in vitro</i> activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions

    Get PDF
    Natural killer (NK) cells are innate lymphocytes capable to recognize and kill virus-infected and cancer cells. In the past years, the use of allogeneic NK cells as anti-cancer therapy gained interest due to their ability to induce graft-versus-cancer responses without causing graft-versus-host disease and multiple protocols have been developed to produce high numbers of activated NK cells. While the ability of these cells to mediate tumor kill has been extensively studied, less is known about their capacity to influence the activity of other immune cells that may contribute to a concerted anti-tumor response in the tumor microenvironment (TME). In this study, we analyzed how an allogeneic off-the-shelf cord blood stem cell-derived NK-cell product influenced the activation of dendritic cells (DC). Crosstalk between NK cells and healthy donor monocyte-derived DC (MoDC) resulted in the release of IFNγ and TNF, MoDC activation, and the release of the T-cell-recruiting chemokines CXCL9 and CXCL10. Moreover, in the presence of prostaglandin-E2, NK cell/MoDC crosstalk antagonized the detrimental effect of IL-10 on MoDC maturation leading to higher expression of multiple (co-)stimulatory markers. The NK cells also induced activation of conventional DC2 (cDC2) and CD8 + T cells, and the release of TNF, GM-CSF, and CXCL9/10 in peripheral blood mononuclear cells of patients with metastatic colorectal cancer. The activated phenotype of MoDC/cDC2 and the increased release of pro-inflammatory cytokines and T-cell-recruiting chemokines resulting from NK cell/DC crosstalk should contribute to a more inflamed TME and may thus enhance the efficacy of T-cell-based therapies.</p

    Second order analysis of geometric functionals of Boolean models

    Full text link
    This paper presents asymptotic covariance formulae and central limit theorems for geometric functionals, including volume, surface area, and all Minkowski functionals and translation invariant Minkowski tensors as prominent examples, of stationary Boolean models. Special focus is put on the anisotropic case. In the (anisotropic) example of aligned rectangles, we provide explicit analytic formulae and compare them with simulation results. We discuss which information about the grain distribution second moments add to the mean values.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jensen. (The second version mainly resolves minor LaTeX problems.

    The influence of syndepositional macropores on the hydraulic integrity of thick alluvial clay aquitards

    Get PDF
    Clay-rich deposits are commonly assumed to be aquitards which act as natural hydraulic barriers due to their low hydraulic connectivity. Postdepositional weathering processes are known to increase the permeability of aquitards in the near surface but not impact on deeper parts of relatively thick formations. However, syndepositional processes affecting the hydraulic properties of aquitards have previously received little attention in the literature. Here, we analyze a 31 m deep sediment core recovered from an inland clay-rich sedimentary sequence using a combination of techniques including particle size distribution and microscopy, centrifuge dye tracer testing and micro X-ray CT imaging. Subaerial deposition of soils within these fine grained alluvial deposits has led to the preservation of considerable macropores (root channels or animal burrows). Connected pores and macropores thus account for vertical hydraulic conductivity (K) of 4.2&times;10-1m/s (geometric mean of 13 samples) throughout the thick aquitard, compared to a matrix K that is likely &lt; 10-10m/s, the minimum K value that was measured. Our testing demonstrates that such syndepositional features may compromise the hydraulic integrity of what otherwise appears to have the characteristics of a much lower permeability aquitard. Heterogeneity within a clay-rich matrix could also enhance vertical connectivity, as indicated by digital analysis of pore morphology in CT images. We highlight that the paleo-environment under which the sediment was deposited must be considered when aquitards are investigated as potential natural hydraulic barriers and illustrate the value of combining multiple investigation techniques for characterizing clay-rich deposits
    corecore