1,310 research outputs found

    Fluorine production in intermediate-mass stars

    Get PDF
    The 19F production during the first dozen thermal pulses of AGB stars with (M=3,Z=0.02), (M=6,Z=0.02) and (M=3,Z=0.001) is investigated on grounds of detailed stellar models and of revised rates for 15N(a,g)19F and 18O(a,g)22Ne. These calculations confirm an early expectation that 19F {\it is} produced in AGB thermal pulses. They also enlarge substantially these previous results by showing that the variations of the level of 19F production during the evolution is very sensitive to the maximum temperature reached at the base of the pulse. These variations are analyzed in detail, and are shown to result from a subtle balance between different nuclear effects (mainly 19F production or destruction in a pulse, and 15N synthesis during the interpulse), possibly super-imposed on dilution effects in more or less extended pulse convective tongues. Our calculations, as most others, do not predict the third dredge-up self- consistently. When parametrized, it appears that our models of intermediate-mass AGB stars are able to account only for the lowest 19F overabundances observed in solar-metallicity MS, S and C stars. That conclusion is expected to hold true for low-mass stars when F production results from secondary 13C only. Massive AGB stars, on the other hand, are not expected to build up large surface F abundanc- es. Therefore, the large F overabundance reported for the super Li-rich star WZ Cas (where HBB is supposed to be operating) remains unexplained so far. Our results for the (M=3,Z=0.001) star indicate that F surface overabundances can also be expected in low-metallicity stars provided that third dredge-ups occur after the early cool pulses. The relative increase in the surface 19F/12C ratio is, however, lower in the low-metallicity than in the solar-metallicity star. No observations areComment: 27 pages, includes figures, postcript file (A&A format, 15 pages including figures) can be found via anonymous ftp at ftp://obsftp.unige.ch/pub/mowlavi/fluor.ps.gz ; accepted by A&

    Non-explosive hydrogen and helium burnings: Abundance predictions from the NACRE reaction rate compilation

    Get PDF
    The abundances of the isotopes of the elements from C to Al produced by the non-explosive CNO, NeNa and MgAl modes of hydrogen burning, as well as by helium burning, are calculated with the thermonuclear rates recommended by the European compilation of reaction rates for astrophysics (NACRE: details about NACRE may be found at http://astro.ulb.ac.be. This electronic address provides many data of nuclear astrophysics interest and also offers the possibility of generating interactively tables of reaction rates for networks and temperature grids selected by the user). The impact of nuclear physics uncertainties on the derived abundances is discussed in the framework of a simple parametric astrophysical model. These calculations have the virtue of being a guide in the selection of the nuclear uncertainties that have to be duly analyzed in detailed model stars, particularly in order to perform meaningful confrontations between abundance observations and predictions. They are also hoped to help nuclear astrophysicists pinpointing the rate uncertainties that have to be reduced most urgently.Comment: 13 pages, 13 figures, Latex, accepted for publication in Astronomy and Astrophysics main journal. Also available at http://astro.ulb.ac.be/Htm/iaa0.ht

    The synthesis of the light Mo and Ru isotopes: how now, no need for an exotic solution ?

    Get PDF
    The most detailed calculations of the p-process call for its development in the O/Ne layers of Type II supernovae. In spite of their overall success in reproducing the solar system content of p-nuclides, they suggest a significant underproduction of the light Mo and Ru isotopes. On grounds of a model for the explosion of a 25 solar mass star with solar metallicity, we demonstrate that this failure might just be related to the uncertainties left in the rate of the 22Ne(alpha,n)25Mg neutron producing reaction. The latter indeed have a direct impact on the distribution of the s-process seeds for the p-process.Comment: 4 pages, 4 figures. LaTex2e with aa.cls. A&A Letters, in pres

    187^{187}Re(\gamm,n) cross section close to and above the neutron threshold

    Full text link
    The neutron capture cross section of the unstable nucleus 186^{186}Re is studied by investigating the inverse photodisintegration reaction 187^{187}Re(γ\gamma,n). The special interest of the {\it s}-process branching point 186^{186}Re is related to the question of possible {\it s}-process contributions to the abundance of the {\it r}-process chronometer nucleus ^{187}Re.Weusethephotoactivationtechniquetomeasurephotodisintegrationrates.Ourexperimentalresultsareingoodagreementwithtwodifferentstatisticalmodelcalculations.AlthoughthecrosssectionspredictedbybothmodelsfortheinversereactionRe. We use the photoactivation technique to measure photodisintegration rates. Our experimental results are in good agreement with two different statistical model calculations. Although the cross sections predicted by both models for the inverse reaction ^{186}Re(n,Re(n,\gamma)istoolowtoremovetheoverproductionof) is too low to remove the overproduction of ^{186}$Os; the two predicted neutron-capture cross sections differ by a factor of 2.4; this calls for future theoretical study.Comment: Phys. Rev. C, in pres

    Effects of Composite Rheology on Plate-Like Behavior in Global-Scale Mantle Convection

    Get PDF
    Earth's upper mantle rheology controls lithosphere-asthenosphere coupling and thus surface tectonics. Rock deformation experiments and seismic anisotropy measurements indicate that composite rheology (co-existing diffusion and dislocation creep) occurs in the Earth's uppermost mantle, potentially affecting convection and surface tectonics. Here, we investigate how the spatio-temporal distribution of dislocation creep in an otherwise diffusion-creep-controlled mantle impacts the planform of convection and the planetary tectonic regime as a function of the lithospheric yield strength in numerical models of mantle convection self-generating plate-like tectonics. The low upper-mantle viscosities caused by zones of substantial dislocation creep produce contrasting effects on surface dynamics. For strong lithosphere (yield strength > 35 MPa), the large lithosphere-asthenosphere viscosity contrasts promote stagnant-lid convection. In contrast, the increase of upper mantle convective vigor enhances plate mobility for lithospheric strength <35 MPa. For the here-used model assumptions, composite rheology does not facilitate the onset of plate-like behavior at large lithospheric strength

    Lithium in the Symbiotic Mira V407 Cyg

    Full text link
    We report an identification of the lithium resonance doublet LiI 6708A in the spectrum of V407 Cyg, a symbiotic Mira with a pulsation period of about 745 days. The resolution of the spectra used was R~18500 and the measured equivalent width of the line is ~0.34A. It is suggested that the lithium enrichment is due to hot bottom burning in the intermediate mass AGB variable, although other possible origins cannot be totally ruled out. In contrast to lithium-rich AGB stars in the Magellanic clouds, ZrO 5551A, 6474A absorption bands were not found in the spectrum of V407Cyg. These are the bands used to classify the S-type stars at low-resolution. Although we identified weak ZrO 5718A, 6412A these are not visible in the low-resolution spectra, and we therefore classify the Mira in V407 Cyg as an M type. This, together with other published work, suggests lithium enrichment can precede the third dredge up of s-process enriched material in galactic AGB stars.Comment: 4 pages, 2 figures, to be published in MNRA

    Spectroscopy of the heaviest nuclei (theory)

    Full text link
    Recent progress in the applications of covariant density functional theory (CDFT) to the description of the spectroscopy of the heaviest nuclei is reviewed. The analysis of quasiparticle spectra in actinides and the heaviest A ~ 250 nuclei provides a measure of the accuracy of the description of single-particle energies in CDFT and an additional constraint for the choice of effective interactions for the description of superheavy nuclei. The response of these nuclei to the rotation is rather well described by cranked relativistic Hartree+Bogoliubov theory and it serves as a supplementary tool in configuration assignment in odd-mass nuclei. A systematic analysis of the fission barriers with allowance for triaxial deformation shows that covariant density functional theory is able to describe fission barriers on a level of accuracy comparable with the best phenomenological macroscopic+microscopic approaches.Comment: 10 pages, 7 figures, invited talk of A.V. Afanasjev at the International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July 4-9, 2010, to be published in Journal of Physics G: Conference Series (JPCS

    Nucleosynthesis in Massive Stars With Improved Nuclear and Stellar Physics

    Get PDF
    We present the first calculations to follow the evolution of all stable nuclei and their radioactive progenitors in stellar models computed from the onset of central hydrogen burning through explosion as Type II supernovae. Calculations are performed for Pop I stars of 15, 19, 20, 21, and 25 M_sun using the most recently available experimental and theoretical nuclear data, revised opacity tables, neutrino losses, and weak interaction rates, and taking into account mass loss due to stellar winds. A novel ``adaptive'' reaction network is employed with a variable number of nuclei (adjusted each time step) ranging from about 700 on the main sequence to more than 2200 during the explosion. The network includes, at any given time, all relevant isotopes from hydrogen through polonium (Z=84). Even the limited grid of stellar masses studied suggests that overall good agreement can be achieved with the solar abundances of nuclei between 16O and 90Zr. Interesting discrepancies are seen in the 20 M_sun model and, so far, only in that model, that are a consequence of the merging of the oxygen, neon, and carbon shells about a day prior to core collapse. We find that, in some stars, most of the ``p-process'' nuclei can be produced in the convective oxygen burning shell moments prior to collapse; in others, they are made only in the explosion. Serious deficiencies still exist in all cases for the p-process isotopes of Ru and Mo.Comment: 53 pages, 17 color figures (3 as separate GIF images), slightly extended discussion and references, accepted by Ap

    Reaction rate uncertainties and 26Al in AGB silicon carbide stardust

    Get PDF
    Stardust is a class of presolar grains each of which presents an ideally uncontaminated stellar sample. Mainstream silicon carbide (SiC) stardust formed in the extended envelopes of carbon-rich asymptotic giant branch (AGB) stars and incorporated the radioactive nucleus 26Al as a trace element. The aim of this paper is to analyse in detail the effect of nuclear uncertainties, in particular the large uncertainties of up to four orders of magnitude related to the 26Al_g+(p,gamma)27Si reaction rate, on the production of 26Al in AGB stars and compare model predictions to data obtained from laboratory analysis of SiC stardust grains. Stellar uncertainties are also briefly discussed. We use a detailed nucleosynthesis postprocessing code to calculate the 26Al/27Al ratios at the surface of AGB stars of different masses (M = 1.75, 3, and 5 M_sun) and metallicities (Z = 0.02, 0.012, and 0.008). For the lower limit and recommended value of the 26Al_g(p,gamma)27Si reaction rate, the predicted 26Al/27Al ratios replicate the upper values of the range of the 26Al/27Al ratios measured in SiC grains. For the upper limit of the 26Al_g(p,gamma)27Si reaction rate, instead, the predicted 26Al/27Al ratios are approximately 100 times lower and lie below the range observed in SiC grains. When considering models of different masses and metallicities, the spread of more than an order of magnitude in the 26Al/27Al ratios measured in stellar SiC grains is not reproduced. We propose two scenarios to explain the spread of the 26Al/27Al ratios observed in mainstream SiC, depending on the choice of the 26Al_g+p reaction rate. One involves different times of stardust formation, the other involves extra-mixing processes. Stronger conclusions will be possible after more information is available from future nuclear experiments on the 26Al_g+p reaction.Comment: 6 pages, 5 Postscript figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore