The abundances of the isotopes of the elements from C to Al produced by the
non-explosive CNO, NeNa and MgAl modes of hydrogen burning, as well as by
helium burning, are calculated with the thermonuclear rates recommended by the
European compilation of reaction rates for astrophysics (NACRE: details about
NACRE may be found at http://astro.ulb.ac.be. This electronic address provides
many data of nuclear astrophysics interest and also offers the possibility of
generating interactively tables of reaction rates for networks and temperature
grids selected by the user). The impact of nuclear physics uncertainties on the
derived abundances is discussed in the framework of a simple parametric
astrophysical model. These calculations have the virtue of being a guide in the
selection of the nuclear uncertainties that have to be duly analyzed in
detailed model stars, particularly in order to perform meaningful
confrontations between abundance observations and predictions. They are also
hoped to help nuclear astrophysicists pinpointing the rate uncertainties that
have to be reduced most urgently.Comment: 13 pages, 13 figures, Latex, accepted for publication in Astronomy
and Astrophysics main journal. Also available at
http://astro.ulb.ac.be/Htm/iaa0.ht