21 research outputs found
Simple model for the Darwinian transition in early evolution
It has been hypothesized that in the era just before the last universal
common ancestor emerged, life on earth was fundamentally collective. Ancient
life forms shared their genetic material freely through massive horizontal gene
transfer (HGT). At a certain point, however, life made a transition to the
modern era of individuality and vertical descent. Here we present a minimal
model for this hypothesized "Darwinian transition." The model suggests that
HGT-dominated dynamics may have been intermittently interrupted by
selection-driven processes during which genotypes became fitter and decreased
their inclination toward HGT. Stochastic switching in the population dynamics
with three-point (hypernetwork) interactions may have destabilized the
HGT-dominated collective state and led to the emergence of vertical descent and
the first well-defined species in early evolution. A nonlinear analysis of a
stochastic model dynamics covering key features of evolutionary processes (such
as selection, mutation, drift and HGT) supports this view. Our findings thus
suggest a viable route from early collective evolution to the start of
individuality and vertical Darwinian evolution, enabling the emergence of the
first species.Comment: 9 pages, 5 figures, under review at Physical Review
When less is more: Non-monotonic spike sequence processing in neurons
Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions
Lehrer/in sein an der Ganztagsschule: Neue Kooperationsanforderungen - neue Belastungen?
Dizinger V, Fussangel K, Böhm-Kasper O. Lehrer/in sein an der Ganztagsschule: Neue Kooperationsanforderungen - neue Belastungen? Zeitschrift für Erziehungswissenschaften. 2011;14(S3):43-61