1,409 research outputs found
On variational principles for coherent vortex structures
Different approaches are discussed of variational principles characterizing coherent vortex structures in two-dimensional flows. Turbulent flows seem to form ordered structures in the large scales of the motion and the self-organization principle predicts asymptotic states realizing an extremal value of the energy or a minimum of enstrophy. On the other hand the small scales take care of the increase of entropy, and asymptotic results can be obtained by applying the theory of equilibrium statistical mechanics
Diet-Independent Remodeling of Cellular Membranes Precedes Seasonally Changing Body Temperature in a Hibernator
Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (Tb), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low Tb. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of Tb and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms
Bayesian inference of biochemical kinetic parameters using the linear noise approximation
Background
Fluorescent and luminescent gene reporters allow us to dynamically quantify changes in molecular species concentration over time on the single cell level. The mathematical modeling of their interaction through multivariate dynamical models requires the deveopment of effective statistical methods to calibrate such models against available data. Given the prevalence of stochasticity and noise in biochemical systems inference for stochastic models is of special interest. In this paper we present a simple and computationally efficient algorithm for the estimation of biochemical kinetic parameters from gene reporter data.
Results
We use the linear noise approximation to model biochemical reactions through a stochastic dynamic model which essentially approximates a diffusion model by an ordinary differential equation model with an appropriately defined noise process. An explicit formula for the likelihood function can be derived allowing for computationally efficient parameter estimation. The proposed algorithm is embedded in a Bayesian framework and inference is performed using Markov chain Monte Carlo.
Conclusion
The major advantage of the method is that in contrast to the more established diffusion approximation based methods the computationally costly methods of data augmentation are not necessary. Our approach also allows for unobserved variables and measurement error. The application of the method to both simulated and experimental data shows that the proposed methodology provides a useful alternative to diffusion approximation based methods
Recurrent prurigo nodularis related to infected tonsils: a case report
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Effects of season and reproductive state on lipid intake and fatty acid composition of gastrointestinal tract contents in the European hare
We investigated lipid content and fatty acid (FA) composition of gastrointestinal tract contents in free-living, herbivorous European hares (Lepus europaeus). Mean crude fat content in hare stomachs and total gastrointestinal (GI) tracts was higher than expected for typical herbivore forages and peaked in late fall when hares massively deposited body fat reserves. Changes of FA proportions in different parts of the GI-tract indicated a highly preferential absorption of polyunsaturated fatty acids (PUFA). A further reduction of PUFA content in the caecum, along with the appearance of odd-chained FAs in caecum, caecotrophes, and colon content, pointed to a biohydrogenation of PUFA in the hare’s hindgut. GI-tract contents showed significant seasonal changes in their FA composition. Among PUFA, α-linolenic acid peaked in spring while linoleic acid was predominant in late summer and fall, which probably reflected changes in the plant composition of forage. However, independent of seasonal changes, GI-tracts of lactating females showed a significantly (+33%) higher content of linoleic acid, a FA that is known to increase reproductive performance in European hares. This finding suggests that lactating females actively selected dietary plants rich in linoleic acid, a PUFA that may represent a limited resource for European hares
Excluding Electroweak Baryogenesis in the MSSM
In the context of the MSSM the Light Stop Scenario (LSS) is the only region
of parameter space that allows for successful Electroweak Baryogenesis (EWBG).
This possibility is very phenomenologically attractive, since it allows for the
direct production of light stops and could be tested at the LHC. The ATLAS and
CMS experiments have recently supplied tantalizing hints for a Higgs boson with
a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of
the LSS, and we discuss the specific predictions made for EWBG in the MSSM.
Combining data from all the available ATLAS and CMS Higgs searches reveals a
tension with the predictions of EWBG even at this early stage. This allows us
to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the
(non-)decoupling limit, by examining correlations between different Higgs decay
channels. We also examine the exclusion without the assumption of a ~ 125 GeV
Higgs. The Higgs searches are still highly constraining, excluding the entire
EWBG parameter space at greater than 90% CL except for a small window of m_h ~
117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added
references
Can Score Databanks Help Teaching?
Basic courses in most medical schools assess students' performance by conferring scores. The objective of this work is to use a large score databank for the early identification of students with low performance and to identify course trends based on the mean of students' grades. METHODOLOGY/PRINCIPAL FINDINGS: We studied scores from 2,398 medical students registered in courses over a period of 10 years. Students in the first semester were grouped into those whose ratings remained in the lower quartile in two or more courses (low-performance) and students who had up to one course in the lower quartile (high-performance). ROC curves were built, aimed at the identification of a cut-off average score in the first semesters that would be able to predict low performances in future semesters. Moreover, to follow the long-term pattern of each course, the mean of all scores conferred in a semester was compared to the overall course mean obtained by averaging 10 years of data. Individuals in the low-performance group had a higher risk of being in the lower quartile of at least one course in the second semester (relative risk 3.907; 95% CI: 3.378-4.519) and in the eighth semester (relative risk 2.873; 95% CI: 2.495-3.308). The prediction analysis revealed that an average score of 7.188 in the first semester could identify students that presented scores below the lower quartiles in both the second and eighth semesters (p<0.0001 for both AUC). When scores conferred by single courses were compared over time, three time-trend patterns emerged: low variation, upward trend and erratic pattern. CONCLUSION/SIGNIFICANCE: An early identification of students with low performance may be useful in promoting pedagogical strategies for these individuals. Evaluation of the time trend of scores conferred by courses may help departments monitoring changes in personnel and methodology that may affect a student's performance
Electronic learning can facilitate student performance in undergraduate surgical education: a prospective observational study
BACKGROUND: Our institution recently introduced a novel internet accessible computer aided learning (iCAL) programme to complement existing surgical undergraduate teaching methods. On graduation of the first full cycle of undergraduate students to whom this resource was available we assessed the utility of this new teaching facility. METHOD: The computer programme prospectively records usage of the system on an individual user basis. We evaluated the utilisation of the web-based programme and its impact on class ranking changes from an entry-test evaluation to an exit examination in surgery. RESULTS: 74.4% of students were able to access iCAL from off-campus internet access. The majority of iCAL usage (64.6%) took place during working hours (08:00–18:00) with little usage on the weekend (21.1%). Working hours usage was positively associated with improvement in class rank (P = 0.025, n = 148) but out-of hours usage was not (P = 0.306). Usage during weekdays was associated with improved rank (P = 0.04), whereas weekend usage was not (P = 0.504). There were no significant differences in usage between genders (P = 0.3). Usage of the iCAL system was positively correlated with improvement in class rank from the entry to the exit examination (P = 0.046). Students with lower ranks on entry examination, were found to use the computer system more frequently (P = 0.01). CONCLUSION: Electronic learning complements traditional teaching methods in undergraduate surgical teaching. Its is more frequently used by students achieving lower class ranking with traditional teaching methods, and this usage is associated with improvements in class ranking
Running Speed in Mammals Increases with Muscle n-6 Polyunsaturated Fatty Acid Content
Polyunsaturated fatty acids (PUFAs) are important dietary components that mammals cannot synthesize de novo. Beneficial effects of PUFAs, in particular of the n-3 class, for certain aspects of animal and human health (e.g., cardiovascular function) are well known. Several observations suggest, however, that PUFAs may also affect the performance of skeletal muscles in vertebrates. For instance, it has been shown that experimentally n-6 PUFA-enriched diets increase the maximum swimming speed in salmon. Also, we recently found that the proportion of PUFAs in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus), are very high compared to other mammals. Therefore, we predicted that locomotor performance, namely running speed, should be associated with differences in muscle fatty acid profiles. To test this hypothesis, we determined phospholipid fatty acid profiles in skeletal muscles of 36 mammalian species ranging from shrews to elephants. We found that there is indeed a general positive, surprisingly strong relation between the n-6 PUFAs content in muscle phospholipids and maximum running speed of mammals. This finding suggests that muscle fatty acid composition directly affects a highly fitness-relevant trait, which may be decisive for the ability of animals to escape from predators or catch prey
- …