28,863 research outputs found
Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor
We report the transfer of phase structure and, in particular, of orbital angular momentum from near-infrared pump light to blue light generated in a four-wave-mixing process in Rb-85 vapor. The intensity and phase profile of the two pump lasers at 780 and 776 nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420 nm, which is generated in a subsequent coherent cascade. In particular, we observe that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase information in atomic gases
Aerosol particle molecular spectroscopy
The molecular spectroscopy of a solution particle by structure resonance modulation spectroscopy is discussed [S. Arnold and A. B. Pluchino, "Infrared Spectrum of a Single Aerosol Particle by Photothermal Modulation of Structure Resonances," Appl. Opt. 21, 4194 (1982); S. Arnold et al., "Molecular Spectroscopy of a Single Aerosol Particle," Opt. Lett. 9, 4 (1984)]. Analytical equations are derived for time dependence of the particle radius as it interacts with a low intensity IR source (<20 mW/cm^2). This formalism is found to be in good agreement with pulsed experiments. Working equations for the spectroscopy are derived for both constant and periodic IR excitation
A simple extended-cavity diode laser
Operating a laser diode in an extended cavity which provides frequency-selective feedback is a very effective method of reducing the laser's linewidth and improving its tunability. We have developed an extremely simple laser of this type, built from inexpensive commercial components with only a few minor modifications, A 780 nm laser built to this design has an output power of 80 mW, a Linewidth of 350 kHz, and it has been continuously locked to a Doppler-free rubidium transition for several days
Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry
A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented
Adaptive reflection and focusing of Bose-Einstein condensates
We report adjustable magnetic `bouncing' and focusing of a dilute Rb
Bose gas. Both the condensate production and manipulation are realised using a
particularly straight-forward apparatus. The bouncing region is comprised of
approximately concentric ellipsoidal magnetic equipotentials with a centre that
can be adjusted vertically. We extend, and discuss the limitations of, simple
Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at
present find close agreement with the condensate's evolution. Very strong
focusing has been inferred and the observation of atomic matter-wave
diffraction should be possible. Prospects look bright for applications in
matter-wave atom-optics, due to the very smooth nature of the mirror
Satellite Precipitation and Cloud Experiment (SPACE)
An experiment plan was formulated to support an investigation of the precipitation processes associated with mesoscale systems and the interaction of rain producing cloud complexes with the meso and macro-scale environment. The field program necessary to accomplish the scientific goals is designed to incorporate satellite information (VIS and IR as well as VAS data), special radiosonde and surface observing capabilities, radar observations of storms development, special observations from aircraft and ground based lightning measurements. The observing network comprises rawinsonde stations located in northern Alabama and eastern Tennessee. A high density raingauge network and the MSFC lightning location network also cover the area. Coordination with NASA U2 and ER2 aircraft programs and with the operational requirements of the microburst severe thunderstorm program can assure the most efficient utilization of the observing resources
Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
We investigate the dynamics of the two-dimensional periodic Kolmogorov flow
of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct
numerical simulations. Above a critical Weissenberg number the flow displays a
transition from stationary to randomly fluctuating states, via periodic ones.
The increasing complexity of the flow in both time and space at progressively
higher values of elasticity accompanies the establishment of mixing features.
The peculiar dynamical behavior observed in the simulations is found to be
related to the appearance of filamental propagating patterns, which develop
even in the limit of very small inertial non-linearities, thanks to the
feedback of elastic forces on the flow.Comment: 10 pages, 14 figure
A transport coefficient: the electrical conductivity
I describe the lattice determination of the electrical conductivity of the
quark gluon plasma. Since this is the first extraction of a transport
coefficient with a degree of control over errors, I next use this to make
estimates of other transport related quantities using simple kinetic theory
formulae. The resulting estimates are applied to fluctuations, ultra-soft
photon spectra and the viscosity. Dimming of ultra-soft photons is exponential
in the mean free path, and hence is a very sensitive probe of transport.Comment: Talk given in ICPAQGP 2005, SINP, Kolkat
A large magnetic storage ring for Bose-Einstein condensates
Cold atomic clouds and Bose-Einstein condensates have been stored in a 10cm
diameter vertically-oriented magnetic ring. An azimuthal magnetic field enables
low-loss propagation of atomic clouds over a total distance of 2m, with a
heating rate of less than 50nK/s. The vertical geometry was used to split an
atomic cloud into two counter-rotating clouds which were recombined after one
revolution. The system will be ideal for studying condensate collisions and
ultimately Sagnac interferometry.Comment: 4 pages, 5 figure
Degree of randomness: numerical experiments for astrophysical signals
Astrophysical and cosmological signals such as the cosmic microwave
background radiation, as observed, typically contain contributions of different
components, and their statistical properties can be used to distinguish one
from the other. A method developed originally by Kolmogorov is involved for the
study of astrophysical signals of randomness of various degrees. Numerical
performed experiments based on the universality of Kolmogorov distribution and
using a single scaling of the ratio of stochastic to regular components, reveal
basic features in the behavior of generated signals also in terms of a critical
value for that ratio, thus enable the application of this technique for various
observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio
- …