28,863 research outputs found

    Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor

    Get PDF
    We report the transfer of phase structure and, in particular, of orbital angular momentum from near-infrared pump light to blue light generated in a four-wave-mixing process in Rb-85 vapor. The intensity and phase profile of the two pump lasers at 780 and 776 nm, shaped by a spatial light modulator, influences the phase and intensity profile of light at 420 nm, which is generated in a subsequent coherent cascade. In particular, we observe that the phase profile associated with orbital angular momentum is transferred entirely from the pump light to the blue. Pumping with more complicated light profiles results in the excitation of spatial modes in the blue that depend strongly on phase matching, thus demonstrating the parametric nature of the mode transfer. These results have implications on the inscription and storage of phase information in atomic gases

    Aerosol particle molecular spectroscopy

    Get PDF
    The molecular spectroscopy of a solution particle by structure resonance modulation spectroscopy is discussed [S. Arnold and A. B. Pluchino, "Infrared Spectrum of a Single Aerosol Particle by Photothermal Modulation of Structure Resonances," Appl. Opt. 21, 4194 (1982); S. Arnold et al., "Molecular Spectroscopy of a Single Aerosol Particle," Opt. Lett. 9, 4 (1984)]. Analytical equations are derived for time dependence of the particle radius as it interacts with a low intensity IR source (<20 mW/cm^2). This formalism is found to be in good agreement with pulsed experiments. Working equations for the spectroscopy are derived for both constant and periodic IR excitation

    A simple extended-cavity diode laser

    Get PDF
    Operating a laser diode in an extended cavity which provides frequency-selective feedback is a very effective method of reducing the laser's linewidth and improving its tunability. We have developed an extremely simple laser of this type, built from inexpensive commercial components with only a few minor modifications, A 780 nm laser built to this design has an output power of 80 mW, a Linewidth of 350 kHz, and it has been continuously locked to a Doppler-free rubidium transition for several days

    Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    Get PDF
    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented

    Adaptive reflection and focusing of Bose-Einstein condensates

    Full text link
    We report adjustable magnetic `bouncing' and focusing of a dilute 87^{87}Rb Bose gas. Both the condensate production and manipulation are realised using a particularly straight-forward apparatus. The bouncing region is comprised of approximately concentric ellipsoidal magnetic equipotentials with a centre that can be adjusted vertically. We extend, and discuss the limitations of, simple Thomas-Fermi and Monte-Carlo theoretical models for the bouncing, which at present find close agreement with the condensate's evolution. Very strong focusing has been inferred and the observation of atomic matter-wave diffraction should be possible. Prospects look bright for applications in matter-wave atom-optics, due to the very smooth nature of the mirror

    Satellite Precipitation and Cloud Experiment (SPACE)

    Get PDF
    An experiment plan was formulated to support an investigation of the precipitation processes associated with mesoscale systems and the interaction of rain producing cloud complexes with the meso and macro-scale environment. The field program necessary to accomplish the scientific goals is designed to incorporate satellite information (VIS and IR as well as VAS data), special radiosonde and surface observing capabilities, radar observations of storms development, special observations from aircraft and ground based lightning measurements. The observing network comprises rawinsonde stations located in northern Alabama and eastern Tennessee. A high density raingauge network and the MSFC lightning location network also cover the area. Coordination with NASA U2 and ER2 aircraft programs and with the operational requirements of the microburst severe thunderstorm program can assure the most efficient utilization of the observing resources

    Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow

    Get PDF
    We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The increasing complexity of the flow in both time and space at progressively higher values of elasticity accompanies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is found to be related to the appearance of filamental propagating patterns, which develop even in the limit of very small inertial non-linearities, thanks to the feedback of elastic forces on the flow.Comment: 10 pages, 14 figure

    A transport coefficient: the electrical conductivity

    Full text link
    I describe the lattice determination of the electrical conductivity of the quark gluon plasma. Since this is the first extraction of a transport coefficient with a degree of control over errors, I next use this to make estimates of other transport related quantities using simple kinetic theory formulae. The resulting estimates are applied to fluctuations, ultra-soft photon spectra and the viscosity. Dimming of ultra-soft photons is exponential in the mean free path, and hence is a very sensitive probe of transport.Comment: Talk given in ICPAQGP 2005, SINP, Kolkat

    A large magnetic storage ring for Bose-Einstein condensates

    Full text link
    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10cm diameter vertically-oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2m, with a heating rate of less than 50nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.Comment: 4 pages, 5 figure

    Degree of randomness: numerical experiments for astrophysical signals

    Full text link
    Astrophysical and cosmological signals such as the cosmic microwave background radiation, as observed, typically contain contributions of different components, and their statistical properties can be used to distinguish one from the other. A method developed originally by Kolmogorov is involved for the study of astrophysical signals of randomness of various degrees. Numerical performed experiments based on the universality of Kolmogorov distribution and using a single scaling of the ratio of stochastic to regular components, reveal basic features in the behavior of generated signals also in terms of a critical value for that ratio, thus enable the application of this technique for various observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio
    • …
    corecore