775 research outputs found

    Wolbachia-mediated antiviral protection in Drosophila larvae and adults following oral infection

    Get PDF
    Understanding viral dynamics in arthropods is of great importance when designing models to describe how viral spread can influence arthropod populations. The endosymbiotic bacterium Wolbachia spp., which is present in up to 40% of all insect species, has the ability to alter viral dynamics in both Drosophila spp. and mosquitoes, a feature that in mosquitoes may be utilized to limit spread of important arboviruses. To understand the potential effect of Wolbachia on viral dynamics in nature, it is important to consider the impact of natural routes of virus infection on Wolbachia antiviral effects. Using adult Drosophila strains, we show here that Drosophila-Wolbachia associations that have previously been shown to confer antiviral protection following systemic viral infection also confer protection against virus-induced mortality following oral exposure to Drosophila C virus in adults. Interestingly, a different pattern was observed when the same fly lines were challenged with the virus when still larvae. Analysis of the four Drosophila-Wolbachia associations that were protective in adults indicated that only the w1118-wMelPop association conferred protection in larvae following oral delivery of the virus. Analysis of Wolbachia density using quantitative PCR (qPCR) showed that a high Wolbachia density was congruent with antiviral protection in both adults and larvae. This study indicates that Wolbachia-mediated protection may vary between larval and adult stages of a given Wolbachia-host combination and that the variations in susceptibility by life stage correspond with Wolbachia density. The differences in the outcome of virus infection are likely to influence viral dynamics in Wolbachia-infected insect populations in nature and could also have important implications for the transmission of arboviruses in mosquito populations

    Effects of warming temperatures on germination responses and trade-offs between seed traits in an alpine plant

    Get PDF
    1. Climate warming may affect multiple aspects of plant life history, including important factors such as germination responses and the key trade-off between offspring size and number. As a case study to address these concepts, we used an alpine plant (waxy bluebell, Wahlenbergia ceracea; Campanulaceae) that shows plasticity to warming in seed traits and in which seed dormancy status regulates germination. We chose an alpine species because alpine environments are ecosystems particularly under threat by climate change. 2. We conducted germination assays under cool and warm temperatures using seeds produced by individuals that were grown under historical (cooler) and future (warmer) temperature scenarios. We assessed the presence of a seed size vs number trade-off, and then examined the effects of seed number and size on germination percentage, the fractions of dormant and viable seeds, and germination velocity. Further, we examined whether warming during parental growth and during germination affected these relationships. 3. We found evidence for a seed size vs number trade-off only under historical parental temperatures. Indeed, under future growth temperatures, parental plants produced fewer and smaller seeds and there was no evidence of a trade-off. However, the reductions in both seed traits under warming did not affect germination, despite correlations of seed size and number with germination traits. Warming increased germination, particularly of larger seeds, but overall it resulted in more than fourfold reductions in parental fitness. 4. Synthesis. Our study shows the importance of growth conditions when evaluating the seed size vs number trade-off. Stressful conditions, such as warmer temperatures, can restrain the ability of plants to reach optimal investment in reproduction, masking the trade-off. By analysing responses across the whole life cycle, we show here an overall detrimental effect of warming, highlighting the potential risk of climate change for W. ceracea, and, potentially, for alpine plant communities more widely.Files can be opened using Excel and analysed using R.Funding provided by: Australian Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000923Award Number: DP170101681Experiments were conducted using the plant species Wahlnebrgia ceracea (waxy bluebells). Two datasets were used in this manuscript. 1) Seed size vs number trade-off: Parental individuals from a total of 30 lines ('Line') were grown in growth chambers for 191 days under temperature conditions of a historical/cooler (1960–1970) or a projected future/warmer (2090–2100) climate ('Parental_Temperature'). The parental individuals were randomly assigned to one of three blocks, which corresponded to positions inside the chambers, and each block was equivalent in all chambers ('Block'). Day and night temperatures during the experiment were changed every 15 days to mimic seasonality, with the maximum day temperatures during the peak of summer being 24°C and 29°C for the historical and future parental temperatures, respectively. After 100 days since the imposition of the temperature treatments (during the peak of the summer), half of the plants were moved for 5 days to new chambers, where the temperature was 5°C above the respective treatments, i.e., 29°C and 34°C ('Heatwave'). After this time, the parental individuals were moved back to their respective historical or future temperature treatments. We collected the seeds throughout the 191 days of parental growth, and we stored them in desiccators for at least 11 weeks. After this time, we calculated seed size ('Seed_Size') as the average mass of three lots of 50 seeds divided by 50. We calculated seed number ('Seed_Number') as the ratio between the cumulative mass of the seeds produced by each parental individual and seed size. The 30 lines of the parental individuals were obtained by crossing plants that originated from seeds that were collected at the same elevation, either high or low elevation ('Elevation') in sites within Kosciuszko National Park, NSW, Australia. Therefore, 14 lines originated from high elevations and 14 lines from low elevations. 2) Germination responses - seed traits correlations: The seeds were harvested from the parental individuals grown under historical/cooler or projected future/warmer temperatures ('Parental_Temperature') (see above) from a subset of 14 lines ('Line'). These seeds were used in germination assays in the glasshouse under cool (25°C) or warm temperatures (30°C) ('Germination_Temperature'). We measured seed size ('Seed_Size') as the average mass of three lots of 50 seeds; then these seeds were sowed in agar dishes (25 seeds per dish, 2 dishes per temperature treatment from each parental individual). Seed number ('Seed_Number') was the same as above. Dishes were left under temperature treatments for 4 weeks to allow germination of the non-dormant fraction of the seeds ('Not_Dormant_Seeds') and germination was checked once per week. Then, all the dishes were moved to a cold room at 4–5°C in the dark for 4 weeks to allow cold stratification. After this time, dishes were moved back to the glasshouse under the same temperature treatments as before to allow germination of the dormant seeds. We considered seeds to be dormant ('Dormant_seeds') if they germinated during or after cold stratification or if they did not germinate at all but were still determined to be viable at the end of the experiment. We considered seed to be viable ('Viable_Seeds') if they germinated ('Germinated_Seeds') as well as the seeds that contained an endosperm but still did not germinate ('Not_Germinated_Seeds'), while we considered empty seeds as non-viable ('Not_Viable_Seeds'). Germinated and not germinated seeds (as above) were used to calculate the germination percentage. We calculated germination velocity ('Germination_Velocity') as the reciprocal of the mean germination time (germination velocity (germination (%) week-1) GV = (G1 + G2 +…+ Gn) / (G1 x T1 + G2 x T2 +…+ Gn x Tn), where Gn is the number of new germinating seeds at each sampling point, and Tn is the time between each sampling point (= one week). The files provided present the datasets in their first sheet and keys with the definitions of each term in the second sheet

    Tolerance of warmer temperatures does not confer resilience to heatwaves in an Alpine herb

    Get PDF
    Climate change is generating both sustained trends in average temperatures and higher frequency and intensity of extreme events. This poses a serious threat to biodiversity, especially in vulnerable environments, like alpine systems. Phenotypic plasticity is considered to be an adaptive mechanism to cope with climate change in situ, yet studies of the plastic responses of alpine plants to high temperature stress are scarce. Future weather extremes will occur against a background of warmer temperatures, but we do not know whether acclimation to warmer average temperatures confers tolerance to extreme heatwaves. Nor do we know whether populations on an elevational gradient differ in their tolerance or plasticity in response to warming and heatwave events. We investigated the responses of a suite of functional traits of an endemic Australian alpine herb, Wahlenbergia ceracea, to combinations of predicted future (warmer) temperatures and (relative) heatwaves. We also tested whether responses differed between high- vs. low-elevation populations. When grown under warmer temperatures, W. ceracea plants showed signs of acclimation by means of higher thermal tolerance (Tcrit, T50, and Tmax). They also invested more in flower production, despite showing a concurrent reduction in photosynthetic efficiency (Fv/Fm) and suppression of seed production. Heatwaves reduced both photosynthetic efficiency and longevity. However, we found no evidence that acclimation to warmer temperatures conferred tolerance of the photosynthetic machinery to heatwaves. Instead, when exposed to heatwaves following warmer growth temperatures, plants had lower photosynthetic efficiency and underwent a severe reduction in seed production. High- and low-elevation populations and families exhibited limited genetic variation in trait means and plasticity in response to temperature. We conclude that W. ceracea shows some capacity to acclimate to warming conditions but there is no evidence that tolerance of warmer temperatures confers any resilience to heatwaves.This research was supported by the Australian Research Council (DP170101681), an International Ph.D. Scholarship to RN and an ARC Future Fellowship FT110100453 to LK. Research grants funded all research related costs (such as renting growth chambers or buying equipment), while the scholarship paid a stipend to RN

    Distribution of emphysema in heavy smokers: Impact on pulmonary function

    Get PDF
    SummaryPurposeTo investigate impact of distribution of computed tomography (CT) emphysema on severity of airflow limitation and gas exchange impairment in current and former heavy smokers participating in a lung cancer screening trial.Materials and MethodsIn total 875 current and former heavy smokers underwent baseline low-dose CT (30mAs) in our center and spirometry and diffusion capacity testing on the same day as part of the Dutch–Belgian Lung Cancer Screening Trial (NELSON). Emphysema was quantified for 872 subjects as the number of voxels with an apparent lowered X-ray attenuation coefficient. Voxels attenuated <−950HU were categorized as representing severe emphysema (ES950), while voxels attenuated between −910HU and −950HU represented moderate emphysema (ES910). Impact of distribution on severity of pulmonary function impairment was investigated with logistic regression, adjusted for total amount of emphysema.ResultsFor ES910 an apical distribution was associated with more airflow obstruction and gas exchange impairment than a basal distribution (both p<0.01). The FEV1/FVC ratio was 1.6% (95% CI 0.42% to 2.8%) lower for apical predominance than for basal predominance, for Tlco/VA the difference was 0.12% (95% CI 0.076–0.15%). Distribution of ES950 had no impact on FEV1/FVC ratio, while an apical distribution was associated with a 0.076% (95% CI 0.038–0.11%) lower Tlco/VA (p<0.001).ConclusionIn a heavy smoking population, an apical distribution is associated with more severe gas exchange impairment than a basal distribution; for moderate emphysema it is also associated with a lower FEV1/FVC ratio. However, differences are small, and likely clinically irrelevant

    Survival and associated factors in 268 adults with Pompe disease prior to treatment with enzyme replacement therapy

    Get PDF
    Background: Pompe disease is a rare lysosomal storage disorder characterized by muscle weakness and wasting. The majority of adult patients have slowly progressive disease, which gradually impairs mobility and respiratory function and may lead to wheelchair and ventilator dependency. It is as yet unknown to what extent the disease reduces the life span of these patients. Our objective was to determine the survival of adults with P

    A case of adult Pompe disease presenting with severe fatigue and selective involvement of type 1 muscle fibers

    Get PDF
    AbstractWe present a case of adult Pompe disease (acid maltase deficiency) with an uncommon clinical presentation characterized by severe fatigue and myalgia prior to the onset of limb girdle weakness. Remarkably, the muscle biopsy demonstrated selective involvement of type 1 muscle fibers. The cause and clinical effects of fiber type specific involvement are currently unknown, but the phenomenon might contribute to the clinical heterogeneity in Pompe disease and the variable response to enzyme replacement therapy

    A high-throughput method for measuring critical thermal limits of leaves by chlorophyll imaging fluorescence

    Get PDF
    Plant thermal tolerance is a crucial research area as the climate warms and extreme weather events become more frequent. Leaves exposed to temperature extremes have inhibited photosynthesis and will accumulate damage to PSII if tolerance thresholds are exceeded. Temperature-dependent changes in basal chlorophyll fluorescence (T-F0) can be used to identify the critical temperature at which PSII is inhibited. We developed and tested a high-throughput method for measuring the critical temperatures for PSII at low (CTMIN) and high (CTMAX) temperatures using a Maxi-Imaging fluorimeter and a thermoelectric Peltier plate heating/cooling system. We examined how experimental conditions of wet vs dry surfaces for leaves and heating/cooling rate, affect CTMIN and CTMAX across four species. CTMAX estimates were not different whether measured on wet or dry surfaces, but leaves were apparently less cold tolerant when on wet surfaces. Heating/cooling rate had a strong effect on both CTMAX and CTMIN that was species-specific. We discuss potential mechanisms for these results and recommend settings for researchers to use when measuring T-F0. The approach that we demonstrated here allows the high-throughput measurement of a valuable ecophysiological parameter that estimates the critical temperature thresholds of leaf photosynthetic performance in response to thermal extremes.This research was supported by the Australian Research Council (DP170101681)

    Radiation dose reduction in pediatric great vessel stent computed tomography using iterative reconstruction: A phantom study

    Get PDF
    Background To study dose reduction using iterative reconstruction (IR) for pediatric great vessel stent computed tomography (CT). Methods Five different great vessel stents were separately placed in a gel-containing plastic holder within an anthropomorphic chest phantom. The stent lumen was filled with diluted contrast gel. CT acquisitions were performed at routine dose, 52% and 81% reduced dose and reconstructed with filtered back projection (FBP) and IR. Objective image quality in terms of noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) as well as subjective image quality were evaluated. Results Noise, SNR and CNR were improved with IR at routine and 52% reduced dose, compared to FBP at routine dose. The lowest dose level resulted in decreased objective image quality with both FBP and IR. Subjective image quality was excellent at all dose levels. Conclusion IR resulted in improved objective image quality at routine dose and 52% reduced dose, while objective image quality deteriorated at 81% reduced dose. Subjective image quality was not affected by dose reduction

    CMB-S4 Science Book, First Edition

    Full text link
    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales
    corecore