20,060 research outputs found

    Transport Coefficients of Gluon Plasma

    Get PDF
    Transport coefficients of gluon plasma are calculated for a SU(3) pure gauge model by lattice QCD simulations on 163×816^3 \times 8 and 243×824^3 \times 8 lattices. Simulations are carried out at a slightly above the deconfinement transition temperature TcT_c, where a new state of matter is currently being pursued in RHIC experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the bulk viscosity is consistent with zero in the region, 1.4T/Tc1.81.4 \leq T/T_c \leq 1.8 .Comment: 10 pages, Late

    One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative 1/p**2 U(1) Gauge Model

    Full text link
    This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ\theta-deformed non-commutative p2p^{-2} model originally introduced by Gurau et al. arXiv:0802.0791. It is shown that breaking terms of the form used by Vilar et al. arXiv:0902.2956 and ourselves arXiv:0901.1681 to localize the BRST covariant operator (D2θ2D2)1(D^2\theta^2D^2)^{-1} lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.Comment: v2: minor corrections and references added; v3: published versio

    Symmetric path integrals for stochastic equations with multiplicative noise

    Get PDF
    A Langevin equation with multiplicative noise is an equation schematically of the form dq/dt = - F(q) + e(q) xi, where e(q) xi is Gaussian white noise whose amplitude e(q) depends on q itself. I show how to convert such equations into path integrals. The definition of the path integral depends crucially on the convention used for discretizing time, and I specifically derive the correct path integral when the convention used is the natural, time-symmetric one that time derivatives are (q_t - q_{t-\Delta t}) / \Delta t and coordinates are (q_t + q_{t-\Delta t}) / 2. [This is the convention that permits standard manipulations of calculus on the action, like naive integration by parts.] It has sometimes been assumed in the literature that a Stratanovich Langevin equation can be quickly converted to a path integral by treating time as continuous but using the rule \theta(t=0) = 1/2. I show that this prescription fails when the amplitude e(q) is q-dependent.Comment: 8 page

    Viscosity of High Energy Nuclear Fluids

    Get PDF
    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.Comment: 6 pages, ReVTeX 4 format, two figures, *.eps forma

    Unified Viscoplastic Behavior of Metal Matrix Composites

    Get PDF
    The need for unified constitutive models was recognized more than a decade ago in the results of phenomenological tests on monolithic metals that exhibited strong creep-plasticity interaction. Recently, metallic alloys have been combined to form high-temperature ductile/ductile composite materials, raising the natural question of whether these metallic composites exhibit the same phenomenological features as their monolithic constituents. This question is addressed in the context of a limited, yet definite (to illustrate creep/plasticity interaction) set of experimental data on the model metal matrix composite (MMC) system W/Kanthal. Furthermore, it is demonstrated that a unified viscoplastic representation, extended for unidirectional composites and correlated to W/Kanthal, can accurately predict the observed longitudinal composite creep/plasticity interaction response and strain rate dependency. Finally, the predicted influence of fiber orientation on the creep response of W/Kanthal is illustrated

    Degree of randomness: numerical experiments for astrophysical signals

    Full text link
    Astrophysical and cosmological signals such as the cosmic microwave background radiation, as observed, typically contain contributions of different components, and their statistical properties can be used to distinguish one from the other. A method developed originally by Kolmogorov is involved for the study of astrophysical signals of randomness of various degrees. Numerical performed experiments based on the universality of Kolmogorov distribution and using a single scaling of the ratio of stochastic to regular components, reveal basic features in the behavior of generated signals also in terms of a critical value for that ratio, thus enable the application of this technique for various observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio

    Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds

    Full text link
    The obstruction to the existence of global action-angle coordinates of Abelian and noncommutative (non-Abelian) completely integrable systems with compact invariant submanifolds has been studied. We extend this analysis to the case of noncompact invariant submanifolds.Comment: 13 pages, to be published in J. Math. Phys. (2007

    Generalized Boltzmann equations for on-shell particle production in a hot plasma

    Get PDF
    A novel refinement of the conventional treatment of Kadanoff--Baym equations is suggested. Besides the Boltzmann equation another differential equation is used for calculating the evolution of the non-equilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in smearing out of the non-analytic threshold behaviour of the spectral function. Possible consequences for the dilepton production are discussed.Comment: 22 pages, latex, 2 ps figure

    First images on the sky from a hyper telescope

    Get PDF
    We show star images obtained with a miniature ``densified pupil imaging interferometer'' also called a hyper-telescope. The formation of such images violates a ``golden rule of imaging interferometers'' which appeared to forbid the use of interferometric arrangements differing from a Fizeau interferometer. These produce useless images when the sub-apertures spacing is much wider than their size, owing to diffraction through the sub-apertures. The hyper-telescope arrangement solves these problems opening the way towards multi-kilometer imaging arrays in space. We experimentally obtain an intensity gain of 24 +- 3X when a densified-pupil interferometer is compared to an equivalent Fizeau-type interferometer and show images of the double star alpha Gem. The initial results presented confirm the possibility of directly obtaining high resolution and high dynamic range images in the recombined focal plane of a large interferometer if enough elements are used.Comment: 6 pages, LaTeX, standard A&A macros + BibTeX macros. Accepted for publication in Astronomy and Astrophysics Supplement

    Demonstration of an inductively coupled ring trap for cold atoms

    Get PDF
    We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas
    corecore