20,872 research outputs found

    B-52 control configured vehicles: Flight test results

    Get PDF
    Recently completed B-52 Control Configured Vehicles (CCV) flight testing is summarized, and results are compared to analytical predictions. Results are presented for five CCV system concepts: ride control, maneuver load control, flutter mode control, augmented stability, and fatigue reduction. Test results confirm analytical predictions and show that CCV system concepts achieve performance goals when operated individually or collectively

    Electron transfer through a multiterminal quantum ring: magnetic forces and elastic scattering effects

    Full text link
    We study electron transport through a semiconductor quantum ring with one input and two output terminals for an elastic scatterer present within one of the arms of the ring. We demonstrate that the scatterer not only introduces asymmetry in the transport probability to the two output leads but also reduces the visibility of the Aharonov-Bohm conductance oscillations. This reduction occurs in spite of the phase coherence of the elastic scattering and is due to interruption of the electron circulation around the ring by the potential defect. The results are in a qualitative agreement with a recent experiment by Strambini et al. [Phys. Rev. B {\bf 79}, 195443 (2009)]. We also indicate that the magnetic symmetry of the sum of conductance of both the output leads as obtained in the experiment can be understood as resulting from the invariance of backscattering to the input lead with respect to the magnetic field orientation.Comment: submitted to PR

    Measurement of temperature profiles in hot gases by emission-absorption spectroscopy Final report

    Get PDF
    Measurement of spectral radiances and absorptances in hot gase

    Effective Kinetic Theory for High Temperature Gauge Theories

    Full text link
    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature TT) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. We show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T)g(T) of high-temperature gauge theories [and all orders in 1/logg(T)11/\log g(T)^{-1}]. As previously proposed in the literature, a leading-order treatment requires including both 2222 particle scattering processes as well as effective ``1212'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.Comment: 40 pages, new subsection on soft gauge field instabilities adde

    Integer Quantum Hall Transition and Random SU(N) Rotation

    Full text link
    We reduce the problem of integer quantum Hall transition to a random rotation of an N-dimensional vector by an su(N) algebra, where only N specially selected generators of the algebra are nonzero. The group-theoretical structure revealed in this way allows us to obtain a new series of conservation laws for the equation describing the electron density evolution in the lowest Landau level. The resulting formalism is particularly well suited to numerical simulations, allowing us to obtain the critical exponent \nu numerically in a very simple way. We also suggest that if the number of nonzero generators is much less than N, the same model, in a certain intermediate time interval, describes percolating properties of a random incompressible steady two-dimensional flow. In other words, quantum Hall transition in a very smooth random potential inherits certain properties of percolation.Comment: 4 pages, 1 figur

    The Biot-Savart operator and electrodynamics on subdomains of the three-sphere

    Full text link
    We study steady-state magnetic fields in the geometric setting of positive curvature on subdomains of the three-dimensional sphere. By generalizing the Biot-Savart law to an integral operator BS acting on all vector fields, we show that electrodynamics in such a setting behaves rather similarly to Euclidean electrodynamics. For instance, for current J and magnetic field BS(J), we show that Maxwell's equations naturally hold. In all instances, the formulas we give are geometrically meaningful: they are preserved by orientation-preserving isometries of the three-sphere. This article describes several properties of BS: we show it is self-adjoint, bounded, and extends to a compact operator on a Hilbert space. For vector fields that act like currents, we prove the curl operator is a left inverse to BS; thus the Biot-Savart operator is important in the study of curl eigenvalues, with applications to energy-minimization problems in geometry and physics. We conclude with two examples, which indicate our bounds are typically within an order of magnitude of being sharp.Comment: 24 pages (was 28 pages) Revised to include a new introduction, a detailed example, and results about helicity; other changes for readabilit

    Investigation of double beta decay with the NEMO-3 detector

    Full text link
    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless (0νββ0\nu\beta\beta) decay and investigate two neutrino double beta decay in seven different isotopically enriched samples (100^{100}Mo, 82^{82}Se, 48^{48}Ca, 96^{96}Zr, 116^{116}Cd, 130^{130}Te and 150^{150}Nd). After analysis of the data corresponding to 3.75 y, no evidence for 0νββ0\nu\beta\beta decay in the 100^{100}Mo and 82^{82}Se samples was found. The half-life limits at the 90% C.L. are 1.110241.1\cdot 10^{24} y and 3.610233.6\cdot 10^{23} y, respectively. Additionally for 0νββ0\nu\beta\beta decay the following limits at the 90% C.L. were obtained, >1.31022> 1.3 \cdot 10^{22} y for 48^{48}Ca, >9.21021> 9.2 \cdot 10^{21} y for 96^{96}Zr and >1.81022> 1.8 \cdot 10^{22} y for 150^{150}Nd. The 2νββ2\nu\beta\beta decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental Interactions Physics" (ITEP, Moscow, November 23-27, 2009

    Relativistic hydrodynamics for heavy-ion collisions

    Full text link
    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed derivation of the equations, and a description of the hydrodynamical evolution of a heavy-ion collisions. Some knowledge of thermodynamics and special relativity is assumed.Comment: Lectures given at the Advanced School on Quark-Gluon Plasma, Indian Institute of Technology, Bombay, 3-13 July, 200

    Nonequilibrium Approach to Bloch-Peierls-Berry Dynamics

    Get PDF
    We examine the Bloch-Peierls-Berry dynamics under a classical nonequilibrium dynamical formulation. In this formulation all coordinates in phase space formed by the position and crystal momentum space are treated on equal footing. Explicitly demonstrations of the no (naive) Liouville theorem and of the validity of Darboux theorem are given. The explicit equilibrium distribution function is obtained. The similarities and differences to previous approaches are discussed. Our results confirm the richness of the Bloch-Peierls-Berry dynamics

    Exact 1/N and Optimized Perturbative Evaluation of mu_c for Homogeneous Interacting Bose Gases

    Full text link
    In the framework of the O(N) three-dimensional effective scalar field model for homogeneous dilute weakly interacting Bose gases we use the 1/N expansion to evaluate, within the large N limit, the parameter r_c which is directly related to the critical chemical potential mu_c. This quantity enters the order-a^2 n^{2/3} coefficient contributing to the critical temperature shift Delta T_c where a represents the s-wave scattering length and n represents the density. Compared to the recent precise numerical lattice simulation results, our calculation suggests that the large N approximation performs rather well even for the physical case N=2. We then calculate the same quantity but using different forms of the optimized perturbative (variational) method, showing that these produce excellent results both for the finite N and large-N cases.Comment: 12 pages, 2 figures. We have performed a refined and extended numerical analysis to take into account the very recent results of Ref. [15
    corecore