3 research outputs found

    Classical and quantum mechanical plane switching in CO2

    Full text link
    Classical plane switching takes place in systems with a pronounced 1:2 resonance, where the degree of freedom with lowest frequency is doubly-degenerate. Under appropriate conditions, one observes a periodic and abrupt precession of the plane in which the doubly-degenerate motion takes place. In this article, we show that quantum plane switching exists in CO2 : Based on our analytical solutions of the classical Hamilton's equations of motion, we describe the dependence on vibrational angular momentum and energy of the frequency of switches and the plane switching angle. Using these results, we find optimal initial wave packet conditions for CO2 and show, through quantum mechanical propagation, that such a wave packet indeed displays plane switching at energies around 10000 cm-1 above the ground state on time scales of about 100 fs.Comment: accepted for publication in the Journal of Chemical Physic

    C

    No full text
    corecore