32 research outputs found

    The effects of increased therapy time on cognition and mood in frail patients with a stroke who rehabilitate on rehabilitation units of nursing homes in the Netherlands: a protocol of a comparative study

    Get PDF
    BACKGROUND: Recovery after stroke is dependent on how much time can be spent on rehabilitation. Recently, we found that therapy time for older stroke patients on a rehabilitation unit of a nursing home could be increased significantly from 8.6 to at least 13 hours a week. This increase was attained by the implementation of interventions, focused on strength, mobility and balance. Nurses carried out these exercises with the patients during their daily activities. The aim of the present study is to investigate if increased therapy time has a positive effect on cognition, mood (depression and anxiety), and ADL in stroke patients. METHODS: A comparative single blind controlled study will be applied. Patients suffering from a stroke and staying on one of the rehabilitation units of the nursing homes are eligible for participation. Participants belong to the intervention group if they stay in two nursing homes where four interventions of the Clinical Nursing Rehabilitation Stroke Guideline were implemented. Participants who stay in two nursing homes where therapy is given according to the Dutch stroke Guideline, are included in the control group. Clinical neuropsychologists will assess patients’ cognitive functioning, level of depression (mood) and anxiety. Nurses will assess a Barthel Index score on a weekly basis (ADL). These variables are measured at baseline, after 8 weeks and at the moment when participants are discharged from the nursing home. DISCUSSION: The present study evaluates the effect of increased therapy time on cognition, mood (level of depression and anxiety), and ADL in stroke patients. When positive effects will be found this study can guide policy makers and practitioners on how to implement more therapy time on rehabilitation wards of nursing homes. TRIAL REGISTRATION: TNR Our study has been documented in the Dutch Trial Registration, TC = 3871

    Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (the SToP-BPD study): Statistical analysis plan

    Get PDF
    Background: Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth with short-term and long-term adverse consequences. Although the glucocorticoid dexamethasone has been proven to be beneficial for the prevention of BPD, there are concerns about an increased risk of adverse neurodevelopmental outcome. Hydrocortisone has been suggested as an alternative therapy. The aim of the Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (SToP-BPD) trial is to assess the efficacy and safety of postnatal hydrocortisone administration for the reduction of death or BPD in ventilator-dependent preterm infants. Methods/design: The SToP-BPD study is a multicentre, double-blind, placebo-controlled hydrocortisone trial in preterm infants at risk for BPD. After parental informed consent is obtained, ventilator-dependent infants are randomly allocated to hydrocortisone or placebo treatment during a 22-day period. The primary outcome measure is the composite outcome of death or BPD at 36 weeks postmenstrual age. Secondary outcomes are short-term effects on pulmonary condition and long-term neurodevelopmental sequelae assessed at 2 years corrected age. Complications of treatment, other serious adverse events and suspected unexpected serious adverse reactions are reported as safety outcomes. This pre-specified statistical analysis plan was written and submitted without knowledge of the unblinded data

    Systemic hydrocortisone to prevent bronchopulmonary dysplasia in preterm infants (the SToP-BPD study); a multicenter randomized placebo controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Randomized controlled trials have shown that treatment of chronically ventilated preterm infants after the first week of life with dexamethasone reduces the incidence of the combined outcome death or bronchopulmonary dysplasia (BPD). However, there are concerns that dexamethasone may increase the risk of adverse neurodevelopmental outcome. Hydrocortisone has been suggested as an alternative therapy. So far no randomized controlled trial has investigated its efficacy when administered after the first week of life to ventilated preterm infants.</p> <p>Methods/Design</p> <p>The SToP-BPD trial is a randomized double blind placebo controlled multicenter study including 400 very low birth weight infants (gestational age < 30 weeks and/or birth weight < 1250 grams), who are ventilator dependent at a postnatal age of 7 - 14 days. Hydrocortisone (cumulative dose 72.5 mg/kg) or placebo is administered during a 22 day tapering schedule. Primary outcome measure is the combined outcome mortality or BPD at 36 weeks postmenstrual age. Secondary outcomes are short term effects on the pulmonary condition, adverse effects during hospitalization, and long-term neurodevelopmental sequelae assessed at 2 years corrected gestational age. Analysis will be on an intention to treat basis.</p> <p>Discussion</p> <p>This trial will determine the efficacy and safety of postnatal hydrocortisone administration at a moderately early postnatal onset compared to placebo for the reduction of the combined outcome mortality and BPD at 36 weeks postmenstrual age in ventilator dependent preterm infants.</p> <p>Trial registration number</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2768">NTR2768</a></p

    Atrial fibrillation in chronic heart failure patients with reduced ejection fraction: The CHECK-HF registry

    Get PDF
    Background: Atrial fibrillation (AF) is common in chronic heart failure (HF) patients and influences the choice and effects of drug and device therapy. In this large real-world HF registry, we studied whether the presence of AF affects the prescription of guideline-recommended HF therapy. Methods: We analyzed 8253 patients with chronic HF with reduced ejection fraction (HFrEF) from 34 Dutch outpatient clinics included in the period between 2013 and 2016 treated according to the 2012 ESC guidelines. Results: 2109 (25.6%) of these patients were in AF (mean age 76.8 ± 9.2 years, 65.0% were men) and 6.144 (74.4%) had no AF (mean age 70.7 ± 12.2 years, 63.6% were men). Patients with AF more often received beta-blockers (81.7% vs. 79.7%, p = 0.04), MRAs (57.1% vs. 51.7%, p < 0.01), diuretics (89.7% vs. 80.6%, p < 0.01) and digoxin (40.1% vs. 9.3%, p < 0.01) compared to patients without AF, whereas they less often receive renin-angiotensin-system (RAS)-inhibitors (76.1% vs. 83.1%, p < 0.01). The number of patients who received beta-blockers, RAS-inhibitor and MRA at ≥50% of the recommended target dose was comparable between those with and without AF (16.6% vs. 15.2%, p = 0.07). Conclusion: In this large cohort of chronic HFrEF patients, the prevalence of AF was high and we observed significant differences in prescription of both guideline-recommended HF between patients with and without AF

    Pharmacokinetics of morphine in encephalopathic neonates treated with therapeutic hypothermia

    Get PDF
    Objective Morphine is a commonly used drug in encephalopathic neonates treated with therapeutic hypothermia after perinatal asphyxia. Pharmacokinetics and optimal dosing of morphine in this population are largely unknown. The objective of this study was to describe pharmacokinetics of morphine and its metabolites morphine-3-glucuronide and morphine-6-glucuronide in encephalopathic neonates treated with therapeutic hypothermia and to develop pharmacokinetics based dosing guidelines for this population. Study design Term and near-term encephalopathic neonates treated with therapeutic hypothermia and receiving morphine were included in two multicenter cohort studies between 2008-2010 (SHIVER) and 2010-2014 (PharmaCool). Data were collected during hypothermia and rewarming, including blood samples for quantification of morphine and its metabolites. Parental informed consent was obtained for all participants. Results 244 patients (GA mean (sd) 39.8 (1.6) weeks, BW mean (sd) 3,428 (613) g, male 61.5%) were included. Morphine clearance was reduced under hypothermia (33.5 degrees C) by 6.89%/degrees C (95% CI 5.37%/degrees C-8.41%/degrees C, p<0.001) and metabolite clearance by 4.91%/degrees C (95% CI 3.53%/degrees C-6.22%/degrees C, p<0.001) compared to normothermia (36.5 degrees C). Simulations showed that a loading dose of 50 mu g/kg followed by continuous infusion of 5 mu g/kg/h resulted in morphine plasma concentrations in the desired range (between 10 and 40 mu g/L) during hypothermia. Conclusions Clearance of morphine and its metabolites in neonates is affected by therapeutic hypothermia. The regimen suggested by the simulations will be sufficient in the majority of patients. However, due to the large interpatient variability a higher dose might be necessary in individual patients to achieve the desired effect

    Phenobarbital, midazolam pharmacokinetics, effectiveness, and drug-drug interaction in asphyxiated neonates undergoing therapeutic hypothermia

    Get PDF
    Background: Phenobarbital and midazolam are commonly used drugs in (near-)term neonates treated with therapeutic hypothermia for hypoxic-ischaemic encephalopathy, for sedation, and/or as anti-epileptic drug. Phenobarbital is an inducer of cytochrome P450 (CYP) 3A, while midazolam is a CYP3A substrate. Therefore, co-treatment with phenobarbital might impact midazolam clearance. Objectives: To assess pharmacokinetics and clinical anti-epileptic effectiveness of phenobarbital and midazolam in asphyxiated neonates and to develop dosing guidelines. Methods: Data were collected in the prospective multicentre PharmaCool study. In the present study, neonates treated with therapeutic hypothermia and receiving midazolam and/or phenobarbital were included. Plasma concentrations of phenobarbital and midazolam including its metabolites were determined in blood samples drawn on days 2–5 after birth. Pharmacokinetic analyses were performed using non-linear mixed effects modelling; clinical effectiveness was defined as no use of additional anti-epileptic drugs. Results: Data were available from 113 (phenobarbital) and 118 (midazolam) neonates; 68 were treated with both medications. Only clearance of 1-hydroxy midazolam was influenced by hypothermia. Phenobarbital co-administration increased midazolam clearance by a factor 2.3 (95% CI 1.9–2.9, p < 0.05). Anticonvulsant effectiveness was 65.5% for phenobarbital and 37.1% for add-on midazolam. Conclusions: Therapeutic hypothermia does not influence clearance of phenobarbital or midazolam in (near-)term neonates with hypoxic-ischaemic encephalopathy. A phenobarbital dose of 30 mg/kg is advised to reach therapeutic concentrations. Phenobarbital co-administration significantly increased midazolam clearance. Should phenobarbital be substituted by non-CYP3A inducers as first-line anticonvulsant, a 50% lower midazolam maintenance dose might be appropriate to avoid excessive exposure during the first days after birth. © 2019 The Author(s) Published by S. Karger AG, Base

    Pharmacokinetics and pharmacodynamics of medication in asphyxiated newborns during controlled hypothermia. The PharmaCool multicenter study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the Netherlands, perinatal asphyxia (severe perinatal oxygen shortage) necessitating newborn resuscitation occurs in at least 200 of the 180–185.000 newly born infants per year. International randomized controlled trials have demonstrated an improved neurological outcome with therapeutic hypothermia. During hypothermia neonates receive sedative, analgesic, anti-epileptic and antibiotic drugs. So far little information is available how the pharmacokinetics (PK) and pharmacodynamics (PD) of these drugs are influenced by post resuscitation multi organ failure and the metabolic effects of the cooling treatment itself. As a result, evidence based dosing guidelines are lacking. This multicenter observational cohort study was designed to answer the question how hypothermia influences the distribution, metabolism and elimination of commonly used drugs in neonatal intensive care.</p> <p>Methods/Design</p> <p>Multicenter cohort study. All term neonates treated with hypothermia for Hypoxic Ischemic Encephalopathy (HIE) resulting from perinatal asphyxia in all ten Dutch Neonatal Intensive Care Units (NICUs) will be eligible for this study. During hypothermia and rewarming blood samples will be taken from indwelling catheters to investigate blood concentrations of several antibiotics, analgesics, sedatives and anti-epileptic drugs. For each individual drug the population PK will be characterized using Nonlinear Mixed Effects Modelling (NONMEM). It will be investigated how clearance and volume of distribution are influenced by hypothermia also taking maturation of neonate into account. Similarly, integrated PK-PD models will be developed relating the time course of drug concentration to pharmacodynamic parameters such as successful seizure treatment; pain assessment and infection clearance.</p> <p>Discussion</p> <p>On basis of the derived population PK-PD models dosing guidelines will be developed for the application of drugs during neonatal hypothermia treatment. The results of this study will lead to an evidence based drug treatment of hypothermic neonatal patients. Results will be published in a national web based evidence based paediatric formulary, peer reviewed journals and international paediatric drug references.</p> <p>Trial registration</p> <p>NTR2529.</p

    Evaluation of a system-specific function to describe the pharmacokinetics of benzylpenicillin in term neonates undergoing moderate hypothermia

    Get PDF
    The pharmacokinetic (PK) properties of intravenous (i.v.) benzylpenicillin in term neonates undergoing moderate hypothermia after perinatal asphyxia were evaluated, as they have been unknown until now. A system-specific modeling approach was applied, in which our recently developed covariate model describing developmental and temperature-induced changes in amoxicillin clearance (CL) in the same patient study population was incorporated into a population PK model of benzylpenicillin with a priori birthweight (BW)-based allometric scaling. Pediatric population covariate models describing the developmental changes in drug elimination may constitute system-specific information and may therefore be incorporated into PK models of drugs cleared through the same pathway. The performance of this system-specific model was compared to that of a reference model. Furthermore, Monte-Carlo simulations were performed to evaluate the optimal dose. The systemspecific model performed as well as the reference model. Significant correlations were found between CL and postnatal age (PNA), gestational age (GA), body temperature (TEMP), urine output (UO; system-specific model), and multiorgan failure (reference model). For a typical patient with a GA of 40 weeks, BW of 3, 000 g, PNA of 2 days (TEMP, 33.5°C), and normal UO (2 ml/kg/h), benzylpenicillin CL was 0.48 liter/h (interindividual variability [IIV] of 49%) and the volume of distribution of the central compartment was 0.62 liter/kg (IIV of 53%) in the system-specific model. Based on simulations, we advise a benzylpenicillin i.v. dose regimen of 75, 000 IU/kg/day every 8 h (q8h), 150, 000 IU/kg/day q8h, and 200, 000 IU/kg/day q6h for patients with GAs of 36 to 37 weeks, 38 to 41 weeks, and ≥42 weeks, respectively. Thesystem-specific model may be used for other drugs cleared through the same pathway accelerating model development

    Is the p value really so significant?

    No full text
    corecore