30 research outputs found

    The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy

    Get PDF
    Purpose Laminectomy is a standard surgical procedure for elderly patients with symptomatic degenerative lumbar stenosis. The procedure aims at decompression of the affected nerves, but it also causes a reduction of spinal shear strength and shear stiffness. The magnitude of this reduction and the influence of bone mineral density (BMD) and disc degeneration are unknown. We studied the influence of laminectomy, BMD, and disc degeneration on shear force to failure (SFF) and shear stiffness (SS). Methods Ten human cadaveric lumbar spines were obtained (mean age 72.1 years, range 53-89 years). Laminectomy was performed either on L2 or L4, equally divided within the group of ten spines. BMD was assessed by dual X-ray absorptiometry (DXA). Low BMD was defined as a BMD value below the median. Intervertebral discs were assessed for degeneration by MRI (Pfirrmann) and scaled in mild and severe degeneration groups. Motion segments L2-L3 and L4-L5 were isolated from each spine. SFF and SS were measured, while loading simultaneously with 1,600 N axial compression. Results Low BMD had a significant negative effect on SFF. In addition, a significant interaction between low BMD and laminectomy was found. In the high BMD group, SFF was 2,482 N (range 1,678-3,284) and decreased to 1,371 N (range 940-1,886) after laminectomy. In the low BMD group, SFF was 1,339 N (range 909-1,628) and decreased to 761 N (range 561-1,221). Disc degeneration did not affect SFF, nor did it interact with laminectomy. Neither low BMD nor the interaction of low BMD and laminectomy did affect SS. Degeneration and its interaction with laminectomy did not significantly affect SS. Conclusions In conclusion, low BMD significantly decreased SFF before and after lumbar laminectomy. Therefore, DXA assessment may be an important asset to preoperative screening. Lumbar disc degeneration did not affect shear properties of lumbar segments before or after laminectomy. © 2012 Springer-Verlag

    Moeten we bomen knuffelen of aan de antidepressiva?

    No full text

    The effects of sex-steroid administration on the pituitary-thyroid axis in transsexuals

    No full text
    OBJECTIVE: Estrogen and androgen administration modulate the pituitary-thyroid axis through alterations in thyroid hormone-binding globulin (TBG) metabolism, but the effects of sex steroids on extrathyroidal thyroxine (T4) to triiodothyronine (T3) conversion in humans are unknown. DESIGN AND METHODS: We studied 36 male-to-female and 14 female-to-male euthyroid transsexuals at baseline and after 4 months of hormonal treatment. Male-to-female transsexuals were treated with cyproterone acetate (CA) 100 mg/day alone (n = 10) or in combination with either oral ethinyl estradiol (or-EE) 100 microg/day (n = 14) or transdermal 17beta-estradiol (td-E) 100 microg twice a week (n = 12). Female-to-male transsexuals were treated with i.m. testosterone 250 mg twice a week. A t-test was used to test for differences within groups and ANOVA with post hoc analysis to test for differences between the groups. RESULTS: Or-EE increased TBG (100 +/- 12%, P < .001) and testosterone decreased TBG (-14 +/- 4%, P = 0.01), but free T4 did not change. Td-E and CA did not affect TBG concentrations. TSH was not different between groups at baseline or after treatment. CA decreased T3/T4 ratios (-9 +/- 3%, P = 0.04), suggesting that T4 to T3 conversion was lower. Testosterone increased T3/T4 ratios (30 +/- 9%, P = 0.02), which probably reflects higher T4 to T3 conversion. CONCLUSION: Oral but not transdermal estradiol increases TBG, whereas testosterone lowers TBG. Testosterone increases T3/T4 ratios. Estradiol does not affect T3/T4 ratios, irrespective of the route of administratio

    A Novel Spinal Implant for Fusionless Scoliosis Correction: A Biomechanical Analysis of the Motion Preserving Properties of a Posterior Periapical Concave Distraction Device

    No full text
    STUDY DESIGN: Biomechanical study. OBJECTIVE: Recently, a posterior concave periapical distraction device for fusionless scoliosis correction was introduced. The goal of this study was to quantify the effect of the periapical distraction device on spinal range of motion (ROM) in comparison with traditional rigid pedicle screw-rod instrumentation. METHODS: Using a spinal motion simulator, 6 human spines were loaded with 4 N m and 6 porcine spines with 2 N m to induce flexion-extension (FE), lateral bending (LB), and axial rotation (AR). ROM was measured in 3 conditions: untreated, periapical distraction device, and rigid pedicle screw-rod instrumentation. RESULTS: The periapical distraction device caused a significant (P < .05) decrease in ROM of FE (human, -40.0% and porcine, -55.9%) and LB (human, -18.2% and porcine, -17.9%) as compared to the untreated spine, while ROM of AR remained unaffected. In comparison, rigid instrumentation caused a significantly (P < .05) larger decrease in ROM of FE (human, -80.9% and porcine, -94.0%), LB (human, -75.0% and porcine, -92.2%), and AR (human, -71.3% and porcine, -86.9%). CONCLUSIONS: Although no destructive forces were applied, no device failures were observed. Spinal ROM was significantly less constrained by the periapical distraction device compared to rigid pedicle screw-rod instrumentation. Therefore, provided that scoliosis correction is achieved, a more physiological spinal motion is expected after scoliosis correction with the posterior concave periapical distraction device

    How does spinal release and ponte osteotomy improve spinal flexibility? the law of diminishing returns

    No full text
    Study Design Experimental study. Objectives To evaluate the effect of stepwise resection of posterior spinal ligaments, facet joints, and ribs on thoracic spinal flexibility. Summary of Background Data Posterior spinal ligaments, facet joints and ribs are removed to increase spinal flexibility in corrective spinal surgery for deformities such as adolescent idiopathic scoliosis (AIS). Reported clinical results vary and biomechanical substantiation is lacking. Methods Ten fresh-frozen human cadaveric thoracic spinal specimens (T6-T11) were studied. A spinal motion simulator applied a pure moment of ±2.5 Nm in flexion, extension, lateral bending (LB) and axial rotation (AR). Range of motion (ROM) was measured for the intact spine and measured again after stepwise resection of the supra/interspinous ligament (SIL), inferior facet, flaval ligament, superior facet, and rib heads. Results SIL resection increased ROM in flexion (10.2%) and AR (3.1%). Successive inferior facetectomy increased ROM in flexion (4.1%), LB (3.8%) and AR (7.7%), and flavectomy in flexion (9.1%) and AR (2.5%). Sequential superior facetectomy only increased ROM in flexion (6.3%). Rib removal provided an additional increase in flexion (6.3%), LB (4.5%) and AR (13.0%). Extension ROM increased by 10.5% after the combined removal of the SIL, inferior facet and flaval ligament. Conclusions Posterior spinal releases in these non-scoliotic spines led to an incremental increase in spinal flexibility, but each sequential step had less effect. As compared to SIL resection with inferior facetectomy, additional superior facetectomy did not improve flexibility in AR and LB and only 6.3% in flexion. The data presented from this in vitro study should be interpreted with care, as no representative cadaveric spine model for AIS was available, However, the results presented here at least question the benefits of performing routine complete facetectomies (i.e. Ponte osteotomies) to increase spinal flexibility in scoliosis surgery

    Quantitative MRI in early intervertebral disc degeneration: T1rho correlates better than T2 and ADC with biomechanics, histology and matrix content

    No full text
    <div><p>Introduction</p><p>Low-back pain (LBP) has been correlated to the presence of intervertebral disc (IVD) degeneration on T2-weighted (T2w) MRI. It remains challenging, however, to accurately stage degenerative disc disease (DDD) based on T2w MRI and measurements of IVD height, particularly for early DDD. Several quantitative MRI techniques have been introduced to detect changes in matrix composition signifying early DDD. In this study, we correlated quantitative T2, T1rho and Apparent Diffusion Coefficient (ADC) values to disc mechanical behavior and gold standard early DDD markers in a graded degenerated lumbar IVD caprine model, to assess their potential for early DDD detection.</p><p>Methods</p><p>Lumbar caprine IVDs were injected with either 0.25 U/ml or 0.5 U/ml Chondroïtinase ABC (Cabc) to trigger early DDD-like degeneration. Injection with phosphate-buffered saline (PBS) served as control. IVDs were cultured in a bioreactor for 20 days under axial physiological loading. High-resolution 9.4 T MR images were obtained prior to intervention and after culture. Quantitative MR results were correlated to recovery behavior, histological degeneration grading, and the content of glycosaminoglycans (GAGs) and water.</p><p>Results</p><p>Cabc-injected IVDs showed aberrancies in biomechanics and loss of GAGs without changes in water-content. All MR sequences detected changes in matrix composition, with T1rho showing largest changes pre-to-post in the nucleus, and significantly more than T2 and ADC. Histologically, degeneration due to Cabc injection was mild. T1rho nucleus values correlated strongest with altered biomechanics, histological degeneration score, and loss of GAGs.</p><p>Conclusions</p><p>T2- and T1rho quantitative MR-mapping detected early DDD changes. T1rho nucleus values correlated better than T2 and ADC with biomechanical, histological, and GAG changes. Clinical implementation of quantitative MRI, T1rho particularly, could aid in distinguishing DDD more reliably at an earlier stage in the degenerative process.</p></div
    corecore