467 research outputs found

    Transverse mass and invariant mass observables for measuring the mass of a semi-invisibly decaying heavy particle

    Full text link
    Formulae are derived for the positions of end-points in the invariant mass and transverse mass distributions obtained from the products of heavy states decaying to pairs of semi-invisibly decaying lighter states. Formulae are derived both for the special case where the two decay chains are identical and the more general case where they are different. The formulae are tested with a simple case study of heavy SUSY higgs particles decaying to gauginos at the LHC.Comment: 13 pages, 8 eps figure

    The Analysis of Multijet Events Produced at High Energy Hadron Colliders

    Get PDF
    We define and discuss a set of (4N - 4) parameters that can be used to analyse events in which N jets have been produced in high energy hadron-hadron collisions. These multijet variables are the multijet mass and (4N - 5) independent dimensionless parameters. To illustrate the use of the variables QCD predictions are presented for events with up to five jets produced at the Fermilab Tevatron Proton-Antiproton Collider. These QCD predictions are compared with the predictions of a model in which multijet events uniformly populate the N-body phase-space

    Sqrt{shat}_{min} resurrected

    Full text link
    We discuss the use of the variable sqrt{shat}_{min}, which has been proposed in order to measure the hard scale of a multi parton final state event using inclusive quantities only, on a SUSY data sample for a 14 TeV LHC. In its original version, where this variable was proposed on calorimeter level, the direct correlation to the hard scattering scale does not survive when effects from soft physics are taken into account. We here show that when using reconstructed objects instead of calorimeter energy and momenta as input, we manage to actually recover this correlation for the parameter point considered here. We furthermore discuss the effect of including W + jets and t tbar+jets background in our analysis and the use of sqrt{shat}_{min} for the suppression of SM induced background in new physics searches.Comment: 23 pages, 9 figures; v2: 1 figure, several subsections and references as well as new author affiliation added. Corresponds to published versio

    Effect of friction on disoriented chiral condensate formation

    Full text link
    We have investigated the effect of friction on the DCC domain formation. We solve the Newton equation of motion for the O(4) fields, with quenched initial condition. The initial fields are randomly distributed in a Gaussian form. In one dimensional expansion, on the average, large DCC domains can not be formed. However, in some particular orbits, large instabilities may occur. This possibility also greatly diminishes with the introduction of friction. But, if the friction is large, the system may be overdamped and then, there is a possibility of large DCC domain formation in some events.Comment: 9 pages, including figure

    How to Make Large Domains of Disoriented Chiral Condensate

    Full text link
    Rajagopal and Wilczek have proposed that relativistic nuclear collisions can generate domains in which the chiral condensate is disoriented. If sufficiently large ({\it i.e.} nucleus sized), such domains can yield measurable fluctuations in the number of neutral and charged pions. However, by numerical simulation of the zero-temperature two-flavor linear sigma model, we find that domains are essentially {\it pion} sized. Nevertheless, we show that large domains can occur if the effective mesons masses are much lighter.Comment: 6 pages and 2 postscript figures, BNL-GGP-

    Hadronic Total Cross-sections Through Soft Gluon Summation in Impact Parameter Space

    Get PDF
    The Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant αs\alpha_s is discussed, both for finite as well as singular, but integrable, αs\alpha_s. The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident.Comment: 20 pages, Latex2e, input FEYNMAN,12 postscipt figures. Submitted to PR

    A fundamental test of the Higgs Yukawa coupling at RHIC in A+A collisions

    Full text link
    Searches for the intermediate boson, W±W^{\pm}, the heavy quantum of the Weak Interaction, via its semi-leptonic decay, W→e+νW\to e +\nu, in the 1970's instead discovered unexpectedly large hadron production at high pTp_T, notably π0\pi^0, which provided a huge background of e±e^{\pm} from internal and external conversions. Methods developed at the CERN ISR which led to the discovery of direct-single-e±e^{\pm} in 1974, later determined to be from the semi-leptonic decay of charm which had not yet been discovered, were used by PHENIX at RHIC to make precision measurements of heavy quark production in p-p and Au+Au collisions, leading to the puzzle of apparent equal suppression of light and heavy quarks in the QGP. If the Higgs mechanism gives mass to gauge bosons but not to fermions, then a proposal that all 6 quarks are nearly massless in a QGP, which would resolve the puzzle, can not be excluded. This proposal can be tested with future measurements of heavy quark correlations in A+A collisionsComment: 12 pages, 16 figures, 26th Winter Workshop on Nuclear Dynamics, Ocho Rios, Jamaica WI, January 2-9, 2010. Corrected citation of 1974 direct single lepton discover

    Fully differential W' production and decay at next-to-leading order in QCD

    Get PDF
    We present the fully differential production and decay of a W' boson, with arbitrary vector and axial-vector couplings, to any final state at next-to-leading order in QCD. We demonstrate a complete factorization of couplings at next-to-leading order in both the partial width of the W' boson, and in the full two-to-two cross section. We provide numerical predictions for the contribution of a W' boson to single-top-quark production, and separate results based on whether the mass of the right-handed neutrino (nu_R) is light enough for the leptonic decay channel to be open. The single-top-quark analysis will allow for an improved direct W' mass limit of 525-550 GeV using data from run I of the Fermilab Tevatron. We propose a modified tolerance method for estimating parton distribution function uncertainties in cross sections.Comment: 23 pages, revtex3, 13 ps fig

    Transverse momentum distributions and their forward- backward correlations in the percolating colour string approach

    Get PDF
    The forward-backward correlations in the pTp_T distributions, which present a clear signature of non-linear effects in particle production, are studied in the model of percolating colour strings. Quantitative predictions are given for these correlations at SPS, RHIC and LHC energies. Interaction of strings also naturally explains the flattening of pTp_T distributions and increase of with energy and atomic number for nuclear collisionsComment: 6 pages in LaTex, 3 figures in Postscrip

    Jet Quenching in the Opposite Direction of a Tagged Photon in High-Energy Heavy-Ion Collisions

    Get PDF
    We point out that events associated with large ETE_T direct photons in high-energy heavy-ion collisions can be used to study jet energy loss in dense matter. In such events, the pTp_T spectrum of charged hadrons from jet fragmentation in the opposite direction of the tagged photon is estimated to be well above the background which can be reliably subtracted at moderately large pTp_T. We demonstrate that comparison between the extracted fragmentation function in AAAA and pppp collisions can be used to determine the jet energy loss and the interaction mean-free-path in the dense matter produced in high-energy heavy-ion collisions.Comment: 4 pages in RevTex twocolumn with embedded psfigure
    • …
    corecore