145 research outputs found

    The distribution of Polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing

    No full text
    The subcellular three-dimensional distribution of three polycomb-group (PcG) proteins-polycomb, polyhomeotic and posterior sex combs-in fixed whole-mount Drosophila embryos was analyzed by multicolor confocal fluorescence microscopy. All three proteins are localized in complex patterns of 100 or more loci throughout most of the interphase nuclear volume. The rather narrow distribution of the protein intensities in the vast majority of loci argues against a PcG-mediated sequestration of repressed target genes by aggregation into subnuclear domains. In contrast to the case for PEV repression (Csink, A.K., and S. Henikoff. 1996. Nature. 381:529-531), there is a lack of correlation between the occurrence of PcG proteins and high concentrations of DNA, demonstrating that the silenced genes are not targeted to heterochromatic regions within the nucleus. There is a clear distinction between sites of transcription in the nucleus and sites of PcG binding, supporting the assumption that most PcG binding loci are sites of repressive complexes. Although the PcG proteins maintain tissue-specific repression for up to 14 cell generations, the proteins studied here visibly dissociate from the chromatin during mitosis, and disperse into the cytoplasm in a differential manner. Quantitation of the fluorescence intensities in the whole mount embryos demonstrate that the dissociated proteins are present in the cytoplasm. We determined that <2% of PH remains attached to late metaphase and anaphase chromosomes. Each of the three proteins that were studied has a different rate and extent of dissociation at prophase and reassociation at telophase. These observations have important implications for models of the mechanism and maintenance of PcG-mediated gene repression

    Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)

    Get PDF
    We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy-lifetime (rFLIM) and resonance energy migration (emFRET) modalities, for wide-field, confocal laser scanning, and flow cytometric microscopy of cells. These methods permit the assessment of rotational motion, association, and proximity of cellular proteins in vivo. They are particularly applicable to probes generated by fusions of Visible Fluorescence Proteins (VFPs), as exemplified by studies of the erbB receptor tyrosine kinases involved in growth-factor mediated signal transduction

    Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells

    Get PDF
    We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson´s disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson´s disease progression, particularly in the context of bioenergetic dysfunction.Fil: Oliveira, L. M. A.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Falomir Lockhart, Lisandro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata ; Argentina. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Botelho, M. G.. Max-Planck-Institut für biophysikalische Chemie; Alemania. Universidade Federal do Rio de Janeiro; BrasilFil: Lin, K. H.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Wales, P.. Universität Göttingen; AlemaniaFil: Koch, J. C.. Universität Göttingen; AlemaniaFil: Gerhardt, Elizabeth. Universität Göttingen; AlemaniaFil: Taschenberger, H.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Outeiro, T. F.. Universität Göttingen; AlemaniaFil: Lingor, P.. Universität Göttingen; AlemaniaFil: Schüele, B.. The Parkinson’s Institute; Estados UnidosFil: Arndt Jovin, D. J.. Max-Planck-Institut für biophysikalische Chemie; AlemaniaFil: Jovin, T. M.. Max-Planck-Institut für biophysikalische Chemie; Alemani

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells

    Get PDF
    It has been reported previously that electric pulses of sufficiently high voltage and short duration can permeabilize the membranes of various organelles inside living cells. In this article, we describe electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. The cells were exposed to short, high-voltage electric pulses (from 1 to 20 pulses, 60 ns, 50 kV/cm, repetition frequency 1 kHz). We observed that 10 and 20 such pulses induced permeabilization of membranes of endocytotic vesicles, detected by release of lucifer yellow from the vesicles into the cytosol. Simultaneously, we detected uptake of propidium iodide through plasma membrane in the same cells. With higher number of pulses permeabilization of the membranes of endocytotic vesicles by pulses of given parameters is accompanied by permeabilization of plasma membrane. However, with lower number of pulses only permeabilization of the plasma membrane was detected
    • …
    corecore