4 research outputs found

    Expansion of 3D human induced pluripotent stem cell aggregates in bioreactors: Bioprocess intensification and scaling-up approaches

    Get PDF
    Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production. We demonstrate the importance of controlling the dissolved oxygen concentration at low levels (4% oxygen) and perfusion at 1.3 day-1 dilution rate to improve hiPSC growth as 3D aggregates in xeno-free medium (Cellartis® DEF-CS™ 500 Xeno-Free Culture Medium). This strategy allowed for increased cell specific growth rate, maximum volumetric cell concentrations (4.7x106 cell/mL) and expansion factors (approximately 19), resulting in an overall improvement of 2.6-fold in cell yields. Extensive cell characterization, including whole proteomic analysis was performed to confirm that the pluripotent phenotype was maintained during culture. Furthermore, a scalable protocol for continuous expansion of hiPSC aggregates in bioreactors was implemented using mechanical dissociation protocols for aggregate disruption and cell passaging. A total expansion factor of 1100 in viable cells was obtained in 11 days of culture (Figure 1), while cells maintained their proliferation capacity, pluripotent phenotype and potential as well as genomic stability after 3 sequential passages in bioreactors. To our knowledge, this is the highest expansion factor reported for hiPSC for such a short culture time frame. The strategy described herein for continuous expansion of hiPSC provides important insights towards up-scale production of hiPSC. This will strengthen the utility of hiPSC in cell therapy, drug discovery, toxicity testing and disease modeling. Please click Additional Files below to see the full abstract

    Bioprocess intensification for the continuous expansion of 3D human induced pluripotent stem cell aggregates in bioreactors

    Get PDF
    Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production. Firstly, we demonstrate the importance of controlling the dissolved oxygen concentration at low levels (4% oxygen) and perfusion at 1.3 day-1 dilution rate to improve hiPSC growth as 3D aggregates in xeno-free medium (Cellartis® DEF-CS™ 500 Xeno-Free Culture Medium). This strategy allowed for increased cell specific growth rate, maximum volumetric cell concentrations (4.7x106 cell/mL) and expansion factors (approximately 19), resulting in an overall improvement of 2.6-fold in cell yields. Extensive cell characterization, including whole proteomic analysis was performed to confirm that the pluripotent phenotype was maintained during culture. Secondly, we have tested different chemical and mechanical strategies for hiPSC aggregate dissociation, revealing similar viable cell recovery yields (approximately 50%). However, only the mechanical dissociation strategies enabled the re-aggregation of hiPSC in stirred conditions, with the mechanical dissociation using a 70 μm pore size nylon mesh allowing a higher expansion factor after dissociation. Finally, a scalable protocol for continuous expansion of hiPSC aggregates in bioreactors was implemented using the mechanical dissociation for aggregate disruption/passaging. A total expansion factor of 1100 in viable cells was obtained in 11 days of culture after 3 sequential passages in bioreactors, while cells maintained their proliferation capacity, pluripotent phenotype and potential as well as genomic stability. To our knowledge, this is the highest expansion factor reported for hiPSC for such a short culture time frame. The strategy described herein for continuous expansion of hiPSC provides important insights towards up-scaling the production of hiPSC. Integrative biomanufacturing processes using this continuous strategy are now being pursued for hiPSC expansion and differentiation towards cardiac lineages in order to recreate cardiac models for drug discovery, toxicity testing and disease modeling. Acknowledgments: This work was supported by Fundação para a Ciência e Tecnologia (FCT)-funded projects CARDIOSTEM (MITP-TB/ECE/0013/2013) and CardioRegen (HMSP-ICT/0039/2013); and iNOVA4Health UID/Multi/04462/2013, a program supported by FCT/Ministério da Educação e Ciência, through national funds and cofounded by FEDER under the PT2020 Partnership Agreement. BA. was supported by FCT Grant SFRH/BD/52475/2013. The work was also funded by a Vinnova Grant, registration number 2014-00310 (Cell therapies via large scale expansion of pluripotent stem cells)

    Évolution de la flore bactérienne avant et après traitement parodontal (étude clinique)

    No full text
    Les parodontites sont des maladies inflammatoires d'origine infectieuse. Des moyens de diagnostics microbiologiques se sont développés permettant d'identifier plus facilement les bactéries pathogènes responsables et de les quantifier plus précisément.Une étude clinique réalisée au centre de soins dentaires de Nantes nous a permis d'analyser la flore bactérienne de 21 patients, au moyen d'analyses microbiologiques (cultures bactériennes et PCR) avant traitement, permettant de mettre en évidence leurs profils bactériens. Ces tests ont été réitérés après traitement parodontal non chirurgical, évaluant ainsi l'impact du traitement mécanique sur la flore.Selon cette étude, le traitement non chirurgical ne semble pas avoir atteint les objectifs microbiologiques sur les patients étudiés.NANTES-BU Médecine pharmacie (441092101) / SudocNANTES-Bib.Odontologie (441092219) / SudocSudocFranceF

    Prognostic Clinical and Biologic Features for Overall Survival after Relapse in Childhood Medulloblastoma

    No full text
    International audienceDespite progress in the biology and upfront treatment of childhood medulloblastoma, relapse is almost universally fatal. No standardized treatment has so far been established for these patients. By determining which characteristics are prognostic after relapse, treatment strategies may be optimized for each of these children. We demonstrated that molecular subgroup at diagnosis is a relevant prognostic factor of outcome after relapse. Moreover, we showed that time to relapse and the use of salvage radiotherapy at relapse might have a potential impact on post-relapse survival. Our data suggest that ongoing efforts toward a better understanding of the biology, timing and type of relapse would be important to understand the determinants of tumor behavior at relapse. This could help us address more specific questions on the best surveillance strategies after completion of the treatment and the introduction of risk-stratified second-line treatment strategies
    corecore