19 research outputs found

    A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids

    Get PDF
    Background: Tyrosine kinase receptors (RTKs) comprise a large family of membrane receptors that regulate various cellular processes in cell biology of diverse organisms. We previously described an atypical RTK in the platyhelminth parasite Schistosoma mansoni, composed of an extracellular Venus flytrap module (VFT) linked through a single transmembrane domain to an intracellular tyrosine kinase domain similar to that of the insulin receptor. Methods and Findings: Here we show that this receptor is a member of a new family of RTKs found in invertebrates, and particularly in insects. Sixteen new members of this family, named Venus Kinase Receptor (VKR), were identified in many insects. Structural and phylogenetic studies performed on VFT and TK domains showed that VKR sequences formed monophyletic groups, the VFT group being close to that of GABA receptors and the TK one being close to that of insulin receptors. We show that a recombinant VKR is able to autophosphorylate on tyrosine residues, and report that it can be activated by L-arginine. This is in agreement with the high degree of conservation of the alpha amino acid binding residues found in many amino acid binding VFTs. The presence of high levels of vkr transcripts in larval forms and in female gonads indicates a putative function of VKR in reproduction and/or development. Conclusion: The identification of RTKs specific for parasites and insect vectors raises new perspectives for the control of human parasitic and infectious diseases

    Etude des RĂ©cepteurs Tyrosine Kinase du parasite helminthe Schistosoma mansoni - DĂ©couverte des Venus Kinase RĂ©cepteurs, une nouvelle famille de RTK

    No full text
    Schistosomiasis still represents a serious public health concern in many developing countries, such as Africa, South America and East-South Asia, which causes 300 000 deaths annually. Schistosomiasis or bilharziasis is a water-borne disease caused by blood-dwelling fluke platyhelminths of the genus Schistosoma which require two different hosts to complete their complex life cycle. Praziquantel (PZQ) is currently the drug of choice for the treatment of schistosomiasis and the only one that is available for mass chemotherapy. Development of tolerance or resistance of schistosomes to PZQ could be expected in the future. I this context, we are searching for other therapeutic targets to combat schistosomes. We proposed that RTK (Receptor Tyrosine Kinase) could constitute new potential targets for novel drug therapies against schistosomiasis. Then, we showed that glucose uptake in Schistosoma mansoni was modulated by SmIR-1 (Schistosoma mansoni Insulin Receptor-like discovered in our laboratory). Finally, from an unusual RTK with a totally unknown structure described in S. mansoni, we discovered a new family of RTK specific for invertebrates of which we are currently exploring the functionLa schistosomiase constitue un problème majeur de santé publique dans de nombreux pays émergents d'Afrique, d'Amérique Latine et d'Asie du Sud Est, causant près de 300 000 décès par an. Cette maladie est due au schistosome qui est un ver parasite possédant un cycle de vie complexe. A ce jour une seule drogue est utilisée en monothérapie, le praziquantel ou PZQ, pour lutter contre cette maladie. En raison d'apparitions de résistances au PZQ, il devient nécessaire de rechercher de nouvelles cibles thérapeutiques contre le ver. Au cours de ma thèse je me suis penché sur l'utilisation potentielle des Récepteurs Tyrosine Kinase (RTK) de schistosomes comme cibles thérapeutiques contre le parasite. En effet, les kinases du schistosome semblent présenter un fort degré de spécificité, ce qui les rend attractives pour le l'élaboration d'inhibiteurs potentiels. Dans ce cadre, nous avons poursuivi l'étude de SmIR-1, un récepteur de l'insuline de Schistosoma mansoni découvert au laboratoire, et montré qu'il pouvait être impliqué dans la prise de glucose chez le parasite. Dans un second temps, à partir d'un RTK totalement atypique décrit au laboratoire chez S. mansoni, nous avons découvert une nouvelle famille de RTK nommés les VKR pour Venus Kinase Recepteur, qui semblerait étendue à l'ensemble des invertébrés et dont nous avons entrepris l'étude fonctionnell

    Simultaneous expression of multiple proteins under a single promoter in Caenorhabditis elegans via a versatile 2A-based toolkit

    No full text
    Caenorhabditis elegans is a powerful in vivo model in which transgenesis is highly developed. However, while the analysis of biological phenomena often require the expression of more than one protein of interest, no reliable tool exists to ensure efficient concomitant and equivalent expression of more than two polypeptides from a single promoter. We report the use of viral 2A peptides, which trigger a "ribosomal-skip" or "STOP&GO" mechanism during translation, to express multiple proteins from a single vector in C. elegans. Although none of the viruses known to infect C. elegans contain 2A-like sequences, our results show that 2A peptides allow the production of separate functional proteins in all cell types and at all developmental stages tested in the worm. In addition, we constructed a toolkit including a 2A-based polycistronic plasmid and reagents to generate 2A-tagged fosmids. 2A peptides constitute an important tool to ensure the delivery of multiple polypeptides in specific cells, enabling several novel applications such as the reconstitution of multi-subunit complexes

    Etude des Récepteurs Tyrosine Kinase du parasite helminthe Schistosoma mansoni (découverte des Récepteurs Venus Kinase, une nouvelle famille de RTK)

    No full text
    La schistosomiase constitue un problème majeur de santé publique dans de nombreux pays émergents d'Afrique, d'Amérique Latine et d'Asie du Sud Est, causant près de 300 000 décès par an. Cette maladie est due au schistosome qui est un ver parasite possédant un cycle de vie complexe. A ce jour une seule drogue est utilisée en monothérapie, le praziquantel ou PZQ, pour lutter contre cette maladie. En raison d'apparitions de résistances au PZQ, il devient nécessaire de rechercher de nouvelles cibles thérapeutiques contre le ver. Au cours de ma thèse je me suis penché sur l'utilisation potentielle des Récepteurs Tyrosine Kinase (RTK) de schistosomes comme cibles thérapeutiques contre le parasite. En effet, les kinases du schistosome semblent présenter un fort degré de spécificité, ce qui les rend attractives pour le l'élaboration d'inhibiteurs potentiels. Dans ce cadre, nous avons poursuivi l'étude de SmIR-1, un récepteur de l'insuline de Schistosoma mansoni découvert au laboratoire, et montré qu'il pouvait être impliqué dans la prise de glucose chez le parasite. Dans un second temps, à partir d'un RTK totalement atypique décrit au laboratoire chez S. mansoni, nous avons découvert une nouvelle famille de RTK nommés les VKR pour Venus Kinase Recepteur, qui semblerait étendue à l'ensemble des invertébrés et dont nous avons entrepris l'étude fonctionnelleLILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF

    Cell plasticity in Caenorhabditis elegans: from induced to natural cell reprogramming

    No full text
    Achieving controlled reprogramming of differentiated cells into a desired cell type would open new opportunities in stem-cell biology and regenerative medicine. Experimentation on cell reprogramming requires a model in which cell conversion can be induced and tracked individually. The tiny nematode, Caenorhabditis elegans, owing to its known cellular lineage, allows the study of direct cell type conversion with a single-cell resolution. Indeed, recent advances have shown that despite its invariant cell lineage, cellular identities can be reprogrammed, leading to cell conversion in vivo. In addition, natural transdifferentiation events occur in the worm, providing a powerful model for the study of cellular plasticity in a physiological cellular microenvironment. Here, we review pioneer studies on induced and naturally occurring reprogramming events in C. elegans and the new notions that have emerged

    Members of the NODE (Nanog and Oct4-associated deacetylase) complex and SOX-2 promote the initiation of a natural cellular reprogramming event in vivo

    No full text
    Differentiated cells can be forced to change identity, either to directly adopt another differentiated identity or to revert to a pluripotent state. Direct reprogramming events can also occur naturally. We recently characterized such an event in Caenorhabditis elegans, in which a rectal cell switches to a neuronal cell. Here we have used this single-cell paradigm to investigate the molecular requirements of direct cell-type conversion, with a focus on the early steps. Our genetic analyses revealed the requirement of sem-4/Sall, egl-27/Mta, and ceh-6/Oct, members of the NODE complex recently identified in embryonic stem (ES) cells, and of the OCT4 partner sox-2, for the initiation of this natural direct reprogramming event. These four factors have been shown to individually impact on ES cell pluripotency; however, whether they act together to control cellular potential during development remained an open question. We further found that, in addition to acting at the same time, these factors physically associate, suggesting that they could act together as a NODE-like complex during this in vivo process. Finally, we have elucidated the functional domains in EGL-27/MTA that mediate its reprogramming activity in this system and have found that modulation of the posterior HOX protein EGL-5 is a downstream event to allow the initiation of Y identity change. Our data reveal unique in vivo functions in a natural direct reprogramming event for these genes that impact on ES cells pluripotency and suggest that conserved nuclear events could be shared between different cell plasticity phenomena across phyla
    corecore