28 research outputs found

    Power inverter for photovoltaic plant and expertise in power control for wind generators

    Get PDF
    The Power System Control Group of a Madrid based university has developed a technology that allows the control of power inverters for photovoltaic plants grid connection. The research group has a great deal of experience in R&D projects dealing with the modelling and control of electrical machines, mainly for wind energy and photovoltaic applications, and renewable energy grid integration. They are seeking companies in these energy sectors, for a technical cooperatio

    Inversor de potencia para plantas fotovoltaicas y control de potencia de aerogeneradores

    Get PDF
    El Grupo de Investigación de Control de Potencia de Universidad Carlos III de Madrid ha desarrollado una tecnología que permite el control de inversores de potencia de generadores fotovoltaicos para su conexión a la red. El grupo posee experiencia en proyectos de I+D sobre modelado y control de máquinas eléctricas, principalmente en el campo de las energías eólica y fotovoltaica, y la integración en la red de energías renovables. El grupo busca compañías interesadas para establecer acuerdos de cooperación técnica

    Damping low-frequency oscillations in power systems using grid-forming converters

    Get PDF
    The increasing incorporation of renewable energy in power systems is causing growing concern about system stability. Renewable energy sources are connected to the grid through power electronic converters, reducing system inertia as they displace synchronous generators. New grid-forming converters can emulate the behavior of synchronous generators in terms of inertia provision and other grid services, like power-frequency and voltage-reactive regulation. Nevertheless, as a consequence of synchronous generator emulation, grid-forming converters also present angle oscillations following a grid disturbance. This paper proposes two novel power stabilizers for damping low-frequency oscillations (LFOs) in the power system. The first power stabilizer provides power oscillation damping through active power (POD-P), and it is implemented in a grid-forming converter, using the active power synchronization loop to damp system oscillations by acting on the converter angle. The second one provides power oscillation damping through reactive power (POD-Q), and it is implemented in a STATCOM, using the voltage control loop to damp system oscillations. Both proposals are first assessed in a small-signal stability study and then in a comprehensive simulation. Moreover, two cases are considered: damping the oscillations of a single machine connected to an infinite bus through a tie-line, and damping the inter-area oscillations in a two-area system. Simulation results, as well as the stability study, demonstrate the ability of both stabilizers to damp power system oscillations, being the POD-P more effective than the POD-Q, but at the cost of requiring some kind of energy provision at the DC bus.This work was supported by the Spanish Research Agency under Project PID2019-106028RB-I00/ AEI/10.13039/501100011033

    Wavelet Analysis to Detect Ground Faults in Electrical Power Systems with Full Penetration of Converter Interface Generation

    Get PDF
    The requirements for the increased penetration of renewable energy sources in electrical power systems have led to a dominance of power electronic interfaces. As a result, short-circuit currents have been reduced by the thermal limitations of power electronics, leading to problems associated with the sensitivity, selectivity, and reliability of protective relays. Although many solutions can be found in the literature, these depend on communications and are not reliable in all grid topologies or under different types of electrical fault. Hence, in this paper, the analysis of ground fault currents and voltages using a wavelet transform in combination with a new algorithm not only detects such ground faults but also allows them to be cleared quickly and selectively in scenarios with low fault current contribution due to a full penetration converter-interface-based generation. To verify and validate the proposed protection system, different ground faults are simulated using an arc ground fault model in a grid scheme based on the IEEE nine-bus standard test system, with only grid-forming power converters as generation sources. The test system is modelled in the MATLAB/Simulink environment. Therefore, the protection relays that verify all the steps established in the new algorithm can detect and clear any ground defect. Simulations are also presented involving different fault locations to demonstrate the effectiveness of the proposed ground fault protection method.This work was supported by the Autonomous Community of Madrid under the PROMINT-CM project (S2018/EMT-4366)

    Black-start capability of PV power plants through a grid-forming control based on reactive power synchronization

    Get PDF
    Power system restoration is a critical process for any power system. As synchronous generators are being replaced by power electronic converters used in renewable energy generation, the contribution of renewable energy power plants to power system restoration (PSR) after a black-out is becoming more relevant, the so-called black start capability. Existing solutions for providing black start capability to photovoltaic (PV) power plants rely on the use of energy storage systems (ESS) in a hybrid PV plant. In contrast, this paper proposes a solution for the contribution of PV power plants to the PSR that allows a completely autonomous black start process. Reactive power synchronization is used for controlling the PV inverters as virtual synchronous generators (VSG), providing grid-forming control and ensuring synchronism. During the black start process, the PV power is regulated to match the demand using a decentralized solution to share the load between multiple PV inverters. The solution has been validated to handle the most critical situations during the black start process such as the variation on the power source, i.e. irradiance, or on the supplied load and the connection to the main grid.This paper was supported by the Spanish Research Agency under project reference PID2019-106028RB-I00/AEI/10.13039/501100011 033

    Control of Variable Speed Wind Turbines with Doubly Fed Asynchronous Generators for Stand-Alone Applications

    Get PDF
    This paper addresses the design and implementation of a novel control of a variable speed wind turbine with doubly fed induction generator for stand-alone applications. In opposition to grid-tied applications, in stand-alone systems the voltage and frequency must be generated by the doubly fed induction generator. Therefore, a voltage and frequency controller is required for supplying the load at constant voltage and frequency. This controller is implemented by orientation of the generator stator flux vector along a synchronous reference axis. In this way, constant voltage and frequency is obtained and the generator will supply the active and reactive power demanded by the load, while the wind turbine will be responsible for achieving power balance in the system. Then, power control is assumed by the pitch actuator controlling the rotational speed of the wind turbine for power balancing. A load shedding mechanism is needed if the load power exceeds the maximum available wind power. Detailed simulation results are presented and discussed to demonstrate the capabilities and contributions of the proposed control scheme.This work has been supported by the I+D program for Research Groups of the Autonomous Community of Madrid under ref. S2013/ICE-2933.PublicadoPublicad

    Control of the Parallel Operation of VSC-HVDC Links Connected to an Offshore Wind Farm

    Get PDF
    This paper introduces the control of the parallel operation of two voltage source converter (VSC)-HVdc links interconnecting an offshore wind farm. The aim of the study is to propose and validate a control system that allows the parallel operation of two VSC-HVdc links by controlling the currents injected by the VSC converters. The currents set points are established by a voltage controller in order to maintain constant voltage and frequency in the capacitor of the output filter and therefore within the offshore wind farm (OWF). It is demonstrated that the decoupled control of the d-q component of the voltage at the capacitor allows achieving the direct control of voltage and frequency, respectively. The voltage and frequency control is implemented by orienting the capacitor voltage toward a synchronous axis that is generated within the controller and therefore is not subjected to any grid disturbance. Both converters collaborate therefore in maintaining constant voltage and frequency, achieving in this way the parallel operation of the converters. The validation of this approach is demonstrated by simulation where the OWF and the VSC-HVdc rectifier have been modeled. Simulation results demonstrate that the proposed control system allows the parallelization of the converters while maintaining constant voltage and frequency within the OWF, even during transient faults

    Decentralized Control of Offshore Wind Farms Connected to Diode-Based HVdc Links

    Get PDF
    This paper presents a novel decentralized control for offshore wind farms connected to the onshore grid through a high-voltage dc link by means of a diode rectifier. The proposed control system is implemented in each wind turbine generator system (WTGS). The capacitor placed at the filter of the wind turbine front-end converter is used for the proposed control implementation. Frequency control is achieved by aligning the capacitor voltage vector along a reference axis rotating at the reference frequency. Then, a frequency-reactive power droop control allows the synchronization of all the WTGSs. On the other hand, this droop strategy also leads to total reactive power sharing among WTGSs without relying on communications. An additional secondary frequency control is also implemented to compensate the frequency deviation caused by the droop control. The proposed control system has been validated by simulation and results demonstrate the appropriate performance even during start-up and faults

    Analysis of the converter synchronizing method for the contribution of battery energy storage systems to inertia emulation

    Get PDF
    This article belongs to the Special Issue Energy Storage for Grid Integration of Renewable Energy.This paper presents a comprehensive analysis of the effect of the converter synchronizing methods on the contribution that Battery Energy Storage Systems (BESSs) can provide for the support of the inertial response of a power system. Solutions based on phase-locked loop (PLL) synchronization and virtual synchronous machine (VSM) synchronization without PLL are described and then compared by using time-domain simulations for an isolated microgrid (MG) case study. The simulation results showed that inertial response can be provided both with and without the use of a PLL. However, the behavior in the first moments of the inertia response differed. For the PLL-based solutions, the transient response was dominated by the low-level current controllers, which imposed fast under-damped oscillations, while the VSM systems presented a slower response resulting in a higher amount of energy exchanged and therefore a greater contribution to the support of the system inertial response. Moreover, it was demonstrated that PLL-based solutions with and without derivative components presented similar behavior, which significantly simplified the implementation of the PLL-based inertia emulation solutions. Finally, results showed that the contribution of the BESS using VSM solutions was limited by the effect of the VSM-emulated inertia parameters on the system stability, which reduced the emulated inertia margin compared to the PLL-based solutions

    Optimal Power Transmission of Offshore Wind Power Using a VSC-HVdc Interconnection

    Get PDF
    High-voltage dc transmission based on voltage-source converter (VSC-HVdc) is quickly increasing its power rating, and it can be the most appropriate link for the connection of offshore wind farms (OWFs) to the grid in many locations. This paper presents a steady-state operation model to calculate the optimal power transmission of an OWF connected to the grid through a VSC-HVdc link. The wind turbines are based on doubly fed induction generators (DFIGs), and a detailed model of the internal OWF grid is considered in the model. The objective of the optimization problem is to maximize the active power output of the OWF, i.e., the reduction of losses, by considering the optimal reactive power allocation while taking into account the restrictions imposed by the available wind power, the reactive power capability of the DFIG, the DC link model, and the operating conditions. Realistic simulations are performed to evaluate the proposed model and to execute optimal operation analyses. The results show the effectiveness of the proposed method and demonstrate the advantages of using the reactive control performed by DFIG to achieve the optimal operation of the VSC-HVdc.This work has been supported by the I+D program for Research Groups of the Autonomous Community of Madrid under ref. S2013/ICE-2933.Publicad
    corecore