258 research outputs found
Scales of the Extra Dimensions and their Gravitational Wave Backgrounds
Circumstances are described in which symmetry breaking during the formation
of our three-dimensional brane within a higher-dimensional space in the early
universe excites mesoscopic classical radion or brane-displacement degrees of
freedom and produces a detectable stochastic background of gravitational
radiation. The spectrum of the background is related to the unification energy
scale and the the sizes and numbers of large extra dimensions. It is shown that
properties of the background observable by gravitational-wave observatories at
frequencies Hz to Hz contain information about
unification on energy scales from 1 to TeV, gravity propagating
through extra-dimension sizes from 1 mm to mm, and the dynamical
history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re
Observation of Pseudoscalar and Axial Vector Resonances in pi- p -> K+ K- pi0 n at 18 GeV
A new measurement of the reaction pi- p -> K+ K- pi0 n has been made at a
beam energy of 18 GeV. A partial wave analysis of the K+ K- pi0 system shows
evidence for three pseudoscalar resonances, eta(1295), eta(1416), and
eta(1485), as well as two axial vectors, f1(1285), and f1(1420). Their observed
masses, widths and decay properties are reported. No signal was observed for
C(1480), an IG J{PC} = 1+ 1{--} state previously reported in phi pi0 decay.Comment: 7 pages, 6 figs, to be submitted to Phys. Let
Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei
So far no theoretical tool for the comprehensive description of exclusive
electroproduction of vector mesons off nuclei at medium energies has been
developed. We suggest a light-cone QCD formalism which is valid at any energy
and incorporates formation effects (color transparency), the coherence length
and the gluon shadowing. At medium energies color transparency (CT) and the
onset of coherence length (CL) effects are not easily separated. Indeed,
although nuclear transparency measured by the HERMES experiment rises with Q^2,
it agrees with predictions of the vector dominance model (VDM) without any CT
effects. Our new results and observations are: (i) the good agreement with the
VDM found earlier is accidental and related to the specific correlation between
Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have
been estimated earlier within the two channel approximation. They are even
stronger at low than at high energies and can be easily identified by HERMES or
at JLab; (iii) gluon shadowing which is important at high energies is
calculated and included; (iv) our parameter-free calculations explain well
available data for variation of nuclear transparency with virtuality and energy
of the photon; (v) predictions for electroproduction of \rho and \phi are
provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton
scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These
asymmetries, arising from interference of the electromagnetic and neutral weak
interactions, are sensitive to strange quark contributions to the currents of
the proton. The measurements were made at JLab using a toroidal spectrometer to
detect the recoiling protons from a liquid hydrogen target. The results
indicate non-zero, Q^2 dependent, strange quark contributions and provide new
information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure
The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
In the G0 experiment, performed at Jefferson Lab, the parity-violating
elastic scattering of electrons from protons and quasi-elastic scattering from
deuterons is measured in order to determine the neutral weak currents of the
nucleon. Asymmetries as small as 1 part per million in the scattering of a
polarized electron beam are determined using a dedicated apparatus. It consists
of specialized beam-monitoring and control systems, a cryogenic hydrogen (or
deuterium) target, and a superconducting, toroidal magnetic spectrometer
equipped with plastic scintillation and aerogel Cerenkov detectors, as well as
fast readout electronics for the measurement of individual events. The overall
design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q2 = 0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of <⌠10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfer
Q
The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis
K2-140b - An eccentric 6.57 d transiting hot Jupiter in Virgo
We present the discovery of K2-140b, a P = 6.57 d Jupiter-mass (MP = 1.019 ± 0.070MJup) planet transiting a V = 12.5 (G5-spectral type) star in an eccentric orbit (e = 0.120-0.046 +0.056) detected using a combination of K2 photometry and ground-based observations. With a radius of 1.095 ± 0.018 RJup, the planet has a bulk density of 0.726 ± 0.062 ÏJup. The host star has a [Fe/H] of 0.12 ± 0.045, and from the K2 light curve, we find a rotation period for the star of 16.3 ± 0.1 d. This discovery is the 9th hot Jupiter from K2 and highlights K2's ability to detect transiting giant planets at periods slightly longer than traditional, ground-based surveys. This planet is slightly inflated, but much less than others with similar incident fluxes. These are of interest for investigating the inflation mechanism of hot Jupiters
- âŠ