21,864 research outputs found

    Flow properties of suspensions rich in solids

    Get PDF
    Mathematical evaluation of flow properties of fluids carrying high concentrations of solids in suspension relates suspension viscosity to physical properties of the solids and liquids, and provides a means for predicting flow behavior. A technique for calculating a suspensions flow rates is applicable to the design of pipelines

    Scattering of Pruppacher-Pitter raindrops at 30 GHz

    Get PDF
    Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated

    Introduction

    Get PDF
    What are the strategies, modalities and aspirations of island-based, stateless nationalist and regionalist parties in the twenty-first century? Political independence is now easier to achieve, even by the smallest of territories; yet, it is not so likely to be pursued with any vigour by the world's various persisting sub-national (and mainly island) jurisdictions. Theirs is a pursuit of different expressions of sub-national autonomy, stopping short of independence. And yet, a number of independence referenda are scheduled, including one looming in Scotland in autumn 2014

    TDIR: Time-Delay Interferometric Ranging for Space-Borne Gravitational-Wave Detectors

    Full text link
    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time-varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time-shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays and study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as Time-Delay Interferometric Ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times ∼104\sim 10^4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated inter-spacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the \textit{Synthetic LISA} software package.Comment: 5 pages, 2 figure

    Absorbed dose measurements and predictions on LDEF

    Get PDF
    The overall radiation environment of the Long Duration Exposure Facility (LDEF) was determined in part through the use of thermoluminescent detectors (TLD's) which were included in several experiments. The results given are from four experiments (A0015 Biostack, M0004 Fiber Optics Data Link, P0004 Seeds in Space, and P0006 Linear Energy Transfer Spectrum Measurement) and represent a large fraction of existing absorbed dose data. The TLD's were located on the leading and the trailing edges and the Earth end of the spacecraft under various shielding depths (0.48 to 15.4 g/sq cm). The measured absorbed doses were found to reflect both directional dependence of incident trapped protons and shielding. At the leading edge, doses ranged from 2.10 to 2.58 Gy under shielding of 2.90 to 1.37 g/sq cm Al equivalent (M0004). At the trailing edge, doses varied from 3.04 to 4.49 Gy under shielding of 11.7 to 3.85 g/sq cm (A0015), doses varied from 2.91 to 6.64 Gy under shielding of 11.1 to 0.48 g/sq cm (P0004), and a dose range of 2.66 to 6.48 Gy was measured under shielding of 15.4 to 0.48 g/sq cm (P0006). At the Earth end of the spacecraft, doses from 2.41 to 3.93 Gy were found under shielding of 10.0 to 1.66 g/sq cm (A0015). The effect of the trapped proton anisotropy was such that the western side of LDEF received more than 2 times the dose of the eastern side at shielding depths of approximately 1 g/sq cm. Calculations utilizing a directional model of trapped proton spectra predict smaller doses than those measured, being about 50 percent of measured values at the trailing edge and Earth end, and about 80 percent near the leading edge

    Prediction of LDEF ionizing radiation environment

    Get PDF
    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements

    Economic Impact of Wildlife-Associated Recreation Expenditures in the Southeast United States: A General Equilibrium Analysis

    Get PDF
    The economic impact of wildlife-associated recreation in the Southeast United States was evaluated using a general equilibrium model. Exogenous demand shocks to the regional economy were based on estimates of expenditures by wildlife recreationists on hunting, fishing, and wildlife watching activities. Counterfactual simulations were carried out, making alternative assumptions about labor and capital mobility and their supply. Without wildlife-associated recreation expenditures, regional employment would have been smaller by up to 783 thousand jobs, and value added would have been 22to22 to 48 billion less. These findings underscore the significance of regional factor market conditions in economic impact and general equilibrium analysis.general equilibrium modeling, input-output analysis, regional economic impact, wildlife-associated recreation activities, Resource /Energy Economics and Policy, R13, R15, Q26,
    • …
    corecore