710 research outputs found
The Advantages of Flexibility:The Role of Entropy in Crystal Structures Containing C-H···F Interactions
Molecular crystal structures are often interpreted in terms of strong, structure directing, intermolecular interactions, especially those with distinct geometric signatures such as H-bonds or π-stacking interactions. Other interactions can be overlooked, perhaps because they are weak or lack a characteristic geometry. We show that although the cumulative effect of weak interactions is significant, their deformability also leads to occupation of low energy vibrational energy levels, which provides an additional stabilizing entropic contribution. The entropies of five fluorobenzene derivatives have been calculated by periodic DFT calculations to assess the entropic influence of C-H···F interactions in stabilizing their crystal structures. Calculations reproduce inelastic neutron scattering data and experimental entropies from heat capacity measurements. C-H···F contacts are shown to have force constants which are around half of those of more familiar interactions such as hydrogen bonds, halogen bonds, and C-H···π interactions. This feature, in combination with the relatively high mass of F, means that the lowest energy vibrations in crystalline fluorobenzenes are dominated by C-H···F contributions. C-H···F contacts occur much more frequently than would be expected from their enthalpic contributions alone, but at 150 K, the stabilizing contribution of entropy provides, at −10 to −15 kJ mol-1, a similar level of stabilization to the N-H···N hydrogen bond in ammonia and O-H···O hydrogen bond in water.</p
Power, norms and institutional change in the European Union: the protection of the free movement of goods
How do institutions of the European Union change? Using an institutionalist approach, this article highlights the interplay between power, cognitive limits, and the normative order that underpins institutional settings and assesses their impact upon the process of institutional change. Empirical evidence from recent attempts to reinforce the protection of the free movement of goods in the EU suggests that, under conditions of uncertainty, actors with ambiguous preferences assess attempts at institutional change on the basis of the historically defined normative order which holds a given institutional structure together. Hence, path dependent and incremental change occurs even when more ambitious and functionally superior proposals are on offer
Effects of Interplanetary Dust on the LISA drag-free Constellation
The analysis of non-radiative sources of static or time-dependent
gravitational fields in the Solar System is crucial to accurately estimate the
free-fall orbits of the LISA space mission. In particular, we take into account
the gravitational effects of Interplanetary Dust (ID) on the spacecraft
trajectories. The perturbing gravitational field has been calculated for some
ID density distributions that fit the observed zodiacal light. Then we
integrated the Gauss planetary equations to get the deviations from the LISA
keplerian orbits around the Sun. This analysis can be eventually extended to
Local Dark Matter (LDM), as gravitational fields are expected to be similar for
ID and LDM distributions. Under some strong assumptions on the displacement
noise at very low frequency, the Doppler data collected during the whole LISA
mission could provide upper limits on ID and LDM densities.Comment: 11 pages, 6 figures, to be published on the special issue of
"Celestial Mechanics and Dynamical Astronomy" on the CELMEC V conferenc
Bound Chains of Tilted Dipoles in Layered Systems
Ultracold polar molecules in multilayered systems have been experimentally
realized very recently. While experiments study these systems almost
exclusively through their chemical reactivity, the outlook for creating and
manipulating exotic few- and many-body physics in dipolar systems is
fascinating. Here we concentrate on few-body states in a multilayered setup. We
exploit the geometry of the interlayer potential to calculate the two- and
three-body chains with one molecule in each layer. The focus is on dipoles that
are aligned at some angle with respect to the layer planes by means of an
external eletric field. The binding energy and the spatial structure of the
bound states are studied in several different ways using analytical approaches.
The results are compared to stochastic variational calculations and very good
agreement is found. We conclude that approximations based on harmonic
oscillator potentials are accurate even for tilted dipoles when the geometry of
the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on
Critical Stability, revised versio
Scanning Tunneling Spectroscopy in MgB 2
We present extensive Scanning Tunneling Spectroscopy (STM/S) measurements at
low temperatures in the multiband superconductor MgB. We find a similar
behavior in single crystalline samples and in single grains, which clearly
shows the partial superconducting density of states of both the and
bands of this material. The superconducting gaps corresponding to both
bands are not single valued. Instead, we find a distribution of superconducting
gaps centered around 1.9mV and 7.5mV, corresponding respectively to each set of
bands. Interband scattering effects, leading to a single gap structure at 4mV
and a smaller critical temperature can be observed in some locations on the
surface. S-S junctions formed by pieces of MgB attached to the tip clearly
show the subharmonic gap structure associated with this type of junctions. We
discuss future developments and possible new effects associated with the
multiband nature of superconductivity in this compound.Comment: 11 pages, 6 figures, submitted to Physica
Superfluidity of flexible chains of polar molecules
We study properties of quantum chains in a gas of polar bosonic molecules
confined in a stack of N identical one- and two- dimensional optical lattice
layers, with molecular dipole moments aligned perpendicularly to the layers.
Quantum Monte Carlo simulations of a single chain (formed by a single molecule
on each layer) reveal its quantum roughening transition. The case of finite
in-layer density of molecules is studied within the framework of the J-current
model approximation, and it is found that N-independent molecular superfluid
phase can undergo a quantum phase transition to a rough chain superfluid. A
theorem is proven that no superfluidity of chains with length shorter than N is
possible. The scheme for detecting chain formation is proposed.Comment: Submitted to Proceedings of the QFS2010 satellite conference "Cold
Gases meet Many-Body Theory", Grenoble, August 7, 2010. This is the expanded
version of V.
Polarized photons in radiative muon capture
We discuss the measurement of polarized photons arising from radiative muon
capture. The spectrum of left circularly polarized photons or equivalently the
circular polarization of the photons emitted in radiative muon capture on
hydrogen is quite sensitive to the strength of the induced pseudoscalar
coupling constant . A measurement of either of these quantities, although
very difficult, might be sufficient to resolve the present puzzle resulting
from the disagreement between the theoretical prediction for and the
results of a recent experiment. This sensitivity results from the absence of
left-handed radiation from the muon line and from the fact that the leading
parts of the radiation from the hadronic lines, as determined from the chiral
power counting rules of heavy-baryon chiral perturbation theory, all contain
pion poles.Comment: 10 pages, 6 figure
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Primordialists and Constructionists: a typology of theories of religion
This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research
Photoproduction of mesons off nuclei
Recent results for the photoproduction of mesons off nuclei are reviewed.
These experiments have been performed for two major lines of research related
to the properties of the strong interaction. The investigation of nucleon
resonances requires light nuclei as targets for the extraction of the isospin
composition of the electromagnetic excitations. This is done with quasi-free
meson photoproduction off the bound neutron and supplemented with the
measurement of coherent photoproduction reactions, serving as spin and/or
isospin filters. Furthermore, photoproduction from light and heavy nuclei is a
very efficient tool for the study of the interactions of mesons with nuclear
matter and the in-medium properties of hadrons. Experiments are currently
rapidly developing due to the combination of high quality tagged (and
polarized) photon beams with state-of-the-art 4pi detectors and polarized
targets
- …