18,233 research outputs found

    Modeling of Euclidean braided fiber architectures to optimize composite properties

    Get PDF
    Three-dimensional braided fiber reinforcements are a very effective toughening mechanism for composite materials. The integral yarn path inherent to this fiber architecture allows for effective multidirectional dispersion of strain energy and negates delamination problems. In this paper a geometric model of Euclidean braid fiber architectures is presented. This information is used to determine the degree of geometric isotropy in the braids. This information, when combined with candidate material properties, can be used to quickly generate an estimate of the available load-carrying capacity of Euclidean braids at any arbitrary angle

    Developing the Naval Mind

    Get PDF

    Dietary protein intake and renal function

    Get PDF
    Recent trends in weight loss diets have led to a substantial increase in protein intake by individuals. As a result, the safety of habitually consuming dietary protein in excess of recommended intakes has been questioned. In particular, there is concern that high protein intake may promote renal damage by chronically increasing glomerular pressure and hyperfiltration. There is, however, a serious question as to whether there is significant evidence to support this relationship in healthy individuals. In fact, some studies suggest that hyperfiltration, the purported mechanism for renal damage, is a normal adaptative mechanism that occurs in response to several physiological conditions. This paper reviews the available evidence that increased dietary protein intake is a health concern in terms of the potential to initiate or promote renal disease. While protein restriction may be appropriate for treatment of existing kidney disease, we find no significant evidence for a detrimental effect of high protein intakes on kidney function in healthy persons after centuries of a high protein Western diet

    Decisive Search for a Diquark-Antidiquark Meson with Hidden Strangeness

    Full text link
    Diquark-antidiquark states are expected to exist as a natural complement of mesons and baryons. Although they were predicted long ago, and some candidates were found experimentally, none has, as yet, been reliably identified. We suggest that the search for the so-called C(1480)C(1480)-meson in reactions such as photoproduction γNϕπN\gamma N\rightarrow\phi\pi N and KNϕπΛK N \rightarrow \phi \pi \Lambda should provide a decisive way to settle this issue. Estimates of the cross sections are given using present experimental information on the C-meson and assuming its diquark-antidiquark structure. Sizable cross sections are predicted (of the order of 0.1 μ\mub for photoproduction and of the order of 0.1 mb for KNKN at the maximum with an insignificant background). Failure to find this kind of signal would imply that the C-meson is {\it not} a diquark-antidiquark state.Comment: 9 pages in LATex + 6 figs. (available from authers upon request), IUHET-269/9

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution

    Get PDF
    Of the five echinoderm classes, only the modern sea urchins (euechinoids) generate a precociously specified embryonic micromere lineage that ingresses before gastrulation and then secretes the biomineral embryonic skeleton. The gene regulatory network (GRN) underlying the specification and differentiation of this lineage is now known. Many of the same differentiation genes as are used in the biomineralization of the embryo skeleton are also used to make the similar biomineral of the spines and test plates of the adult body. Here, we determine the components of the regulatory state upstream of these differentiation genes that are shared between embryonic and adult skeletogenesis. An abrupt “break point” in the micromere GRN is thus revealed, on one side of which most of the regulatory genes are used in both, and on the other side of which the regulatory apparatus is entirely micromere-specific. This reveals the specific linkages of the micromere GRN forged in the evolutionary process by which the skeletogenic gene batteries were caused to be activated in the embryonic micromere lineage. We also show, by comparison with adult skeletogenesis in the sea star, a distant echinoderm outgroup, that the regulatory apparatus responsible for driving the skeletogenic differentiation gene batteries is an ancient pleisiomorphic aspect of the echinoderm-specific regulatory heritage

    Homogenization of weakly coupled systems of Hamilton--Jacobi equations with fast switching rates

    Full text link
    We consider homogenization for weakly coupled systems of Hamilton--Jacobi equations with fast switching rates. The fast switching rate terms force the solutions converge to the same limit, which is a solution of the effective equation. We discover the appearance of the initial layers, which appear naturally when we consider the systems with different initial data and analyze them rigorously. In particular, we obtain matched asymptotic solutions of the systems and rate of convergence. We also investigate properties of the effective Hamiltonian of weakly coupled systems and show some examples which do not appear in the context of single equations.Comment: final version, to appear in Arch. Ration. Mech. Ana

    Observations of TeV gamma rays from Markarian 501 at large zenith angles

    Get PDF
    TeV gamma rays from the blazar Markarian 501 have been detected with the University of Durham Mark 6 atmospheric Cerenkov telescope using the imaging technique at large zenith angles. Observations were made at zenith angles in the range 70 - 73 deg during 1997 July and August when Markarian 501 was undergoing a prolonged and strong flare.Comment: 7 pages, 2 figures, accepted for publication in J. Phys. G.: Nucl. Part. Phy

    IBIS/PICsIT in-flight performances

    Full text link
    PICsIT (Pixellated Imaging CaeSium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. PICsIT operates in the gamma-ray energy range between 175 keV and 10 MeV, with a typical energy resolution of 10% at 1 MeV, and an angular resolution of 12 arcmin within a \~100 square degree field of view, with the possibility to locate intense point sources in the MeV region at the few arcmin level. PICsIT is based upon a modular array of 4096 independent CsI(Tl) pixels, ~0.70 cm^2 in cross-section and 3 cm thick. In this work, the PICsIT on-board data handling and science operative modes are described. This work presents the in-flight performances in terms of background count spectra, sensitivity limit, and imaging capabilities.Comment: 8 pages, 4 figures. Accepted for publication on A&A, special issue on First Science with INTEGRA
    corecore