956 research outputs found

    Power-Law Distributions in a Two-sided Market and Net Neutrality

    Full text link
    "Net neutrality" often refers to the policy dictating that an Internet service provider (ISP) cannot charge content providers (CPs) for delivering their content to consumers. Many past quantitative models designed to determine whether net neutrality is a good idea have been rather equivocal in their conclusions. Here we propose a very simple two-sided market model, in which the types of the consumers and the CPs are {\em power-law distributed} --- a kind of distribution known to often arise precisely in connection with Internet-related phenomena. We derive mostly analytical, closed-form results for several regimes: (a) Net neutrality, (b) social optimum, (c) maximum revenue by the ISP, or (d) maximum ISP revenue under quality differentiation. One unexpected conclusion is that (a) and (b) will differ significantly, unless average CP productivity is very high

    Validating child vaccination status in a demographic surveillance system using data from a clinical cohort study: evidence from rural South Africa

    Get PDF
    <p><b>Background:</b> Childhood vaccination coverage can be estimated from a range of sources. This study aims to validate vaccination data from a longitudinal population-based demographic surveillance system (DSS) against data from a clinical cohort study.</p> <p><b>Methods:</b> The sample includes 821 children in the Vertical Transmission cohort Study (VTS), who were born between December 2001 and April 2005, and were matched to the Africa Centre DSS, in northern KwaZulu-Natal. Vaccination information in the surveillance was collected retrospectively, using standardized questionnaires during bi-annual household visits, when the child was 12 to 23 months of age. DSS vaccination information was based on extraction from a vaccination card or, if the card was not available, on maternal recall. In the VTS, vaccination data was collected at scheduled maternal and child clinic visits when a study nurse administered child vaccinations. We estimated the sensitivity of the surveillance in detecting vaccinations conducted as part of the VTS during these clinic visits.</p> <p><b>Results:</b> Vaccination data in matched children in the DSS was based on the vaccination card in about two-thirds of the cases and on maternal recall in about one-third. The sensitivity of the vaccination variables in the surveillance was high for all vaccines based on either information from a South African Road-to-Health (RTH) card (0.94-0.97) or maternal recall (0.94-0.98). Addition of maternal recall to the RTH card information had little effect on the sensitivity of the surveillance variable (0.95-0.97). The estimates of sensitivity did not vary significantly, when we stratified the analyses by maternal antenatal HIV status. Addition of maternal recall of vaccination status of the child to the RTH card information significantly increased the proportion of children known to be vaccinated across all vaccines in the DSS.</p> <p><b>Conclusion:</b> Maternal recall performs well in identifying vaccinated children aged 12-23 months (both in HIV-infected and HIV-uninfected mothers), with sensitivity similar to information extracted from vaccination cards. Information based on both maternal recall and vaccination cards should be used if the aim is to use surveillance data to identify children who received a vaccination.</p&gt

    Characteristics of predictor sets found using differential prioritization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feature selection plays an undeniably important role in classification problems involving high dimensional datasets such as microarray datasets. For filter-based feature selection, two well-known criteria used in forming predictor sets are relevance and redundancy. However, there is a third criterion which is at least as important as the other two in affecting the efficacy of the resulting predictor sets. This criterion is the degree of differential prioritization (DDP), which varies the emphases on relevance and redundancy depending on the value of the DDP. Previous empirical works on publicly available microarray datasets have confirmed the effectiveness of the DDP in molecular classification. We now propose to establish the fundamental strengths and merits of the DDP-based feature selection technique. This is to be done through a simulation study which involves vigorous analyses of the characteristics of predictor sets found using different values of the DDP from toy datasets designed to mimic real-life microarray datasets.</p> <p>Results</p> <p>A simulation study employing analytical measures such as the distance between classes before and after transformation using principal component analysis is implemented on toy datasets. From these analyses, the necessity of adjusting the differential prioritization based on the dataset of interest is established. This conclusion is supported by comparisons against both simplistic rank-based selection and state-of-the-art equal-priorities scoring methods, which demonstrates the superiority of the DDP-based feature selection technique. Reapplying similar analyses to real-life multiclass microarray datasets provides further confirmation of our findings and of the significance of the DDP for practical applications.</p> <p>Conclusion</p> <p>The findings have been achieved based on analytical evaluations, not empirical evaluation involving classifiers, thus providing further basis for the usefulness of the DDP and validating the need for unequal priorities on relevance and redundancy during feature selection for microarray datasets, especially highly multiclass datasets.</p

    The spatial scale of density-dependent growth and implications for dispersal from nests in juvenile Atlantic salmon

    Get PDF
    By dispersing from localized aggregations of recruits, individuals may obtain energetic benefits due to reduced experienced density. However, this will depend on the spatial scale over which individuals compete. Here, we quantify this scale for juvenile Atlantic salmon (Salmo salar) following emergence and dispersal from nests. A single nest was placed in each of ten replicate streams during winter, and information on the individual positions (±1 m) and the body sizes of the resulting young-of-the-year (YOY) juveniles was obtained by sampling during the summer. In six of the ten streams, model comparisons suggested that individual body size was most closely related to the density within a mean distance of 11 m (range 2–26 m). A link between body size and density on such a restricted spatial scale suggests that dispersal from nests confers energetic benefits that can counterbalance any survival costs. For the four remaining streams, which had a high abundance of trout and older salmon cohorts, no single spatial scale could best describe the relation between YOY density and body size. Energetic benefits of dispersal associated with reduced local density therefore appear to depend on the abundance of competing cohorts or species, which have spatial distributions that are less predictable in terms of distance from nests. Thus, given a trade-off between costs and benefits associated with dispersal, and variation in benefits among environments, we predict an evolving and/or phenotypically plastic growth rate threshold which determines when an individual decides to disperse from areas of high local density

    Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas

    Get PDF
    The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.Jinghui Zhang, Gang Wu, Claudia P Miller, Ruth G Tatevossian, James D Dalton, Bo Tang, Wilda Orisme, Chandanamali Punchihewa, Matthew Parker, Ibrahim Qaddoumi, Fredrick A Boop, Charles Lu, Cyriac Kandoth, Li Ding, Ryan Lee, Robert Huether, Xiang Chen, Erin Hedlund, Panduka Nagahawatte, Michael Rusch, Kristy Boggs, Jinjun Cheng, Jared Becksfort, Jing Ma, Guangchun Song, Yongjin Li, Lei Wei, Jianmin Wang, Sheila Shurtleff, John Easton, David Zhao, Robert S Fulton, Lucinda L Fulton, David J Dooling, Bhavin Vadodaria, Heather L Mulder, Chunlao Tang, Kerri Ochoa, Charles G Mullighan, Amar Gajjar, Richard Kriwacki, Denise Sheer, Richard J Gilbertson, Elaine R Mardis, Richard K Wilson, James R Downing, Suzanne J Baker and David W Elliso

    Species Specificity in Major Urinary Proteins by Parallel Evolution

    Get PDF
    Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity. Recently, the major urinary proteins (Mups) have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues

    The Concise Guide to PHARMACOLOGY 2023/24: Transporters

    Get PDF
    \ua9 2023 The Authors. British Journal of Pharmacology published by John Wiley &amp; Sons Ltd on behalf of The British Pharmacological Society.The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore