13 research outputs found

    Neonatal presentation of ventricular tachycardia and a Reye-like syndrome episode associated with disturbed mitochondrial energy metabolism

    Get PDF
    BACKGROUND: Hyperammonemia, hypoglycemia, hepatopathy, and ventricular tachycardia are common presenting features of carnitine-acylcarnitine translocase deficiency (Mendelian Inheritance in Man database: *212138), a mitochondrial fatty acid oxidation disorder with a lethal prognosis. These features have not been identified as the presenting features of mitochondrial cytopathy in the neonatal period. CASE PRESENTATION: We describe an atypical presentation of mitochondrial cytopathy in a 2 day-old neonate. She presented with a Reye-like syndrome episode, premature ventricular contractions and ventricular tachycardia. Initial laboratory evaluation exhibited a large amount of 3-methylglutaconic acid on urine organic acid analysis, mild orotic aciduria and a nonspecific abnormal acylcarnitine profile. The evaluation for carnitine-acylcarnitine translocase deficiency and other fatty acid oxidation disorders was negative. The patient later developed a hypertrophic cardiomyopathy and continued to be affected by recurrent Reye-like syndrome episodes triggered by infections. A muscle biopsy exhibited signs of a mitochondrial cytopathy. During the course of her disease, her Reye-like syndrome episodes have subsided; however, cardiomyopathy has persisted along with fatigue and exercise intolerance. CONCLUSIONS: This case illustrates that, in the neonatal period, hyperammonemia and ventricular tachycardia may be the presenting features of a lethal carnitine-acylcarnitine translocase deficiency or of a mitochondrial cytopathy, associated with a milder clinical course. This association broadens the spectrum of presenting phenotypes observed in patients with disturbed mitochondrial energy metabolism. Also, the presence of 3-methylglutaconic aciduria suggests mitochondrial dysfunction and mild orotic aciduria could potentially be used as a marker of mitochondrial disease

    Mice with Truncated MeCP2 Recapitulate Many Rett Syndrome Features and Display Hyperacetylation of Histone H3

    Get PDF
    Mutations in the methyl-CpG binding protein 2 ( MECP2) gene cause Rett syndrome (RTT), a neurodevelopmental disorder characterized by the loss of language and motor skills during early childhood. We generated mice with a truncating mutation similar to those found in RTT patients. These mice appeared normal and exhibited normal motor function for about 6 weeks, but then developed a progressive neurological disease that includes many features of RTT: tremors, motor impairments, hypoactivity, increased anxiety-related behavior, seizures, kyphosis, and stereotypic forelimb motions. Additionally, we show that although the truncated MeCP2 protein in these mice localizes normally to heterochromatic domains in vivo, histone H3 is hyperacetylated, providing evidence that the chromatin architecture is abnormal and that gene expression may be misregulated in this model of Rett syndrome

    International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods

    No full text
    Hippocampal sclerosis (HS) is the most frequent histopathology encountered in patients with drug-resistant temporal lobe epilepsy (TLE). Over the past decades, various attempts have been made to classify specific patterns of hippocampal neuronal cell loss and correlate subtypes with postsurgical outcome. However, no international consensus about definitions and terminology has been achieved. A task force reviewed previous classification schemes and proposes a system based on semiquantitative hippocampal cell loss patterns that can be applied in any histopathology laboratory. Interobserver and intraobserver agreement studies reached consensus to classify three types in anatomically well-preserved hippocampal specimens: HS International League Against Epilepsy (ILAE) type 1 refers always to severe neuronal cell loss and gliosis predominantly in CA1 and CA4 regions, compared to CA1 predominant neuronal cell loss and gliosis (HS ILAE type 2), or CA4 predominant neuronal cell loss and gliosis (HS ILAE type 3). Surgical hippocampus specimens obtained from patients with TLE may also show normal content of neurons with reactive gliosis only (no-HS). HS ILAE type 1 is more often associated with a history of initial precipitating injuries before age 5 years, with early seizure onset, and favorable postsurgical seizure control. CA1 predominant HS ILAE type 2 and CA4 predominant HS ILAE type 3 have been studied less systematically so far, but some reports point to less favorable outcome, and to differences regarding epilepsy history, including age of seizure onset. The proposed international consensus classification will aid in the characterization of specific clinicopathologic syndromes, and explore variability in imaging and electrophysiology findings, and in postsurgical seizure control
    corecore