36 research outputs found

    Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change

    Get PDF
    We propose here that the Atlantic meridional overturning circulation (AMOC) plays an important role in setting the effective heat capacity of the World Ocean and thus impacts the pace of transient climate change. The depth and strength of AMOC are shown to be strongly correlated with the depth of heat storage across a suite of state-of-the-art general circulation models (GCMs). In those models with a deeper and stronger AMOC, a smaller portion of the heat anomaly remains in the ocean mixed layer, and consequently, the surface temperature response is delayed. Representations of AMOC differ vastly across the GCMs, providing a major source of intermodel spread in the sea surface temperature (SST) response. A two-layer model fit to the GCMs is used to demonstrate that the intermodel spread in SSTs due to variations in the ocean's effective heat capacity is significant but smaller than the spread due to climate feedbacks.United States. National Aeronautics and Space Administration. Modeling, Analysis, and Prediction ProgramJames S. McDonnell Foundation (Postdoctoral Fellowship

    The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing

    Get PDF
    We study the role of the ocean in setting the patterns and timescale of the transient response of the climate to anthropogenic greenhouse gas forcing. A novel framework is set out which involves integration of an ocean-only model in which the anthropogenic temperature signal is forced from the surface by anomalous downwelling heat fluxes and damped at a rate controlled by a ‘climate feedback’ parameter. We observe a broad correspondence between the evolution of the anthropogenic temperature (T[subscript anthro]) in our simplified ocean-only model and that of coupled climate models perturbed by a quadrupling of CO[subscript 2]. This suggests that many of the mechanisms at work in fully coupled models are captured by our idealized ocean-only system. The framework allows us to probe the role of the ocean in delaying warming signals in the Southern Ocean and in the northern North Atlantic, and in amplifying the warming signal in the Arctic. By comparing active and passive temperature-like tracers we assess the degree to which changes in ocean circulation play a role in setting the distribution and evolution of T[subscript anthro]. The background ocean circulation strongly influences the large-scale patterns of ocean heat uptake and storage, such that T[subscript anthro] is governed by an advection/diffusion equation and weakly damped to the atmosphere at a rate set by climate feedbacks. Where warming is sufficiently small, for example in the Southern Ocean, changes in ocean circulation play a secondary role. In other regions, most noticeably in the North Atlantic, changes in ocean circulation induced by T[subscript anthro] are central in shaping the response.United States. National Aeronautics and Space Administration. Modeling, Analysis, and Prediction ProgramMassachusetts Institute of Technology. Joint Program on the Science & Policy of Global ChangeJames S. McDonnell Foundation (Postdoctoral Fellowship

    The remote impacts of climate feedbacks on regional climate predictability

    Get PDF
    Uncertainty in the spatial pattern of climate change is dominated by divergent predictions among climate models. Model differences are closely linked to their representation of climate feedbacks, that is, the additional radiative fluxes that are caused by changes in clouds, water vapour, surface albedo, and other factors, in response to an external climate forcing. Progress in constraining this uncertainty is therefore predicated on understanding how patterns of individual climate feedbacks aggregate into a regional and global climate response. Here we present a simple, moist energy balance model that combines regional feedbacks and the diffusion of both latent and sensible heat. Our model emulates the relationship between regional feedbacks and temperature response in more comprehensive climate models; the model can therefore be used to understand how uncertainty in feedback patterns drives uncertainty in the patterns of temperature response. We find that whereas uncertainty in tropical feedbacks induces a global response, the impact of uncertainty in polar feedbacks remains predominantly regionally confined

    The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake

    Get PDF
    The effect of ocean heat uptake (OHU) on transient global warming is studied in a multimodel framework. Simple heat sinks are prescribed in shallow aquaplanet ocean mixed layers underlying atmospheric general circulation models independently and combined with CO_2 forcing. Sinks are localized to either tropical or high latitudes, representing distinct modes of OHU found in coupled simulations. Tropical OHU produces modest cooling at all latitudes, offsetting only a fraction of CO_2 warming. High-latitude OHU produces three times more global mean cooling in a strongly polar-amplified pattern. Global sensitivities in each scenario are set primarily by large differences in local shortwave cloud feedbacks, robust across models. Differences in atmospheric energy transport set the pattern of temperature change. Results imply that global and regional warming rates depend sensitively on regional ocean processes setting the OHU pattern, and that equilibrium climate sensitivity cannot be reliably estimated from transient observations
    corecore