7,136 research outputs found

    Tilted accretion discs in cataclysmic variables: tidal instabilities and superhumps

    Full text link
    We investigate the growth of tidal instabilities in accretion discs in a binary star potential, using three dimensional numerical simulations. As expected from analytic work, the disc is prone to an eccentric instability provided that it is large enough to extend to the 3:1 resonance. The eccentric disc leads to positive superhumps in the light curve. It has been proposed that negative superhumps might arise from a tilted disc, but we find no evidence that the companion gravitational tilt instability can grow fast enough in a fluid disc to create a measurable inclination. The origin of negative superhumps in the light curves of cataclysmic variables remains a puzzle.Comment: 7 pages, 7 figures, accepted for publication in MNRA

    Phase Transitions and superuniversality in the dynamics of a self-driven particle

    Full text link
    We study an active random walker model in which a particle's motion is determined by a self-generated field. The field encodes information about the particle's path history. This leads to either self-attractive or self-repelling behavior. For self-repelling behavior, we find a phase transition in the dynamics: when the coupling between the field and the walker exceeds a critical value, the particle's behavior changes from renormalized diffusion to one characterized by a diverging diffusion coefficient. The dynamical behavior for all cases is surprisingly independent of dimension and of the noise amplitude.Comment: 14 pages, 4 figure

    Migration of extrasolar planets to large orbital radii

    Full text link
    Observations of structure in circumstellar debris discs provide circumstantial evidence for the presence of massive planets at large (several tens of au) orbital radii, where the timescale for planet formation via core accretion is prohibitively long. Here, we investigate whether a population of distant planets can be produced via outward migration subsequent to formation in the inner disc. Two possibilities for significant outward migration are identified. First, cores that form early at radii of around 10 au can be carried to larger radii via gravitational interaction with the gaseous disc. This process is efficient if there is strong mass loss from the disc - either within a cluster or due to photoevaporation from a star more massive than the Sun - but does not require the extremely destructive environment found, for example, in the core of the Orion Nebula. We find that, depending upon the disc model, gas disc migration can yield massive planets (several Jupiter masses) at radii of around 20-50 au. Second, interactions within multiple planet systems can drive the outer planet into a large, normally highly eccentric orbit. A series of scattering experiments suggests that this process is most efficient for lower mass planets within systems of unequal mass ratio. This mechanism is a good candidate for explaining the origin of relatively low mass giant planets in eccentric orbits at large radii.Comment: MNRAS, in pres

    Massive planet migration: Theoretical predictions and comparison with observations

    Full text link
    We quantify the utility of large radial velocity surveys for constraining theoretical models of Type II migration and protoplanetary disk physics. We describe a theoretical model for the expected radial distribution of extrasolar planets that combines an analytic description of migration with an empirically calibrated disk model. The disk model includes viscous evolution and mass loss via photoevaporation. Comparing the predicted distribution to a uniformly selected subsample of planets from the Lick / Keck / AAT planet search programs, we find that a simple model in which planets form in the outer disk at a uniform rate, migrate inward according to a standard Type II prescription, and become stranded when the gas disk is dispersed, is consistent with the radial distribution of planets for orbital radii 0.1 AU < a < 2.5 AU and planet masses greater than 1.65 Jupiter masses. Some variant models are disfavored by existing data, but the significance is limited (~95%) due to the small sample of planets suitable for statistical analysis. We show that the favored model predicts that the planetary mass function should be almost independent of orbital radius at distances where migration dominates the massive planet population. We also study how the radial distribution of planets depends upon the adopted disk model. We find that the distribution can constrain not only changes in the power-law index of the disk viscosity, but also sharp jumps in the efficiency of angular momentum transport that might occur at small radii.Comment: ApJ, in press. References updated to match published versio

    Quasi-Langmuir-Blodgett Thin Film Deposition of Carbon Nanotubes

    Get PDF
    The handling and manipulation of carbon nanotubes continues to be a challenge to those interested in the application potential of these promising materials. To this end, we have developed a method to deposit pure nanotube films over large flat areas on substrates of arbitrary composition. The method bears some resemblance to the Langmuir-Blodgett deposition method used to lay down thin organic layers. We show that this redeposition technique causes no major changes in the films' microstructure and that they retain the electronic properties of as-deposited film laid down on an alumina membrane.Comment: 3 pages, 3 figures, submitted Journal of Applied Physic

    Lecture notes on the formation and early evolution of planetary systems

    Get PDF
    These notes provide an introduction to the theory of the formation and early evolution of planetary systems. Topics covered include the structure, evolution and dispersal of protoplanetary disks; the formation of planetesimals, terrestrial and gas giant planets; and orbital evolution due to gas disk migration, planetesimal scattering, and planet-planet interactions

    Magnetically modulated accretion in T Tauri stars

    Get PDF
    We examine how accretion on to T Tauri stars may be modulated by a time-dependent `magnetic gate' where the inner edge of the accretion disc is disrupted by a varying stellar field. We show that magnetic field variations on time-scales shorter than 10^5 yr can modulate the accretion flow, thus providing a possible mechanism both for the marked photometric variability of T Tauri stars and for the possible conversion of T Tauri stars between classical and weak line status. We thus suggest that archival data relating to the spectrophotometric variability of T Tauri stars may provide an indirect record of magnetic activity cycles in low-mass pre-main-sequence stars.Comment: LaTeX file (requires mn.sty), 4 pages, no figures or tables. To appear in MNRAS

    The effects of tidally induced disc structure on white dwarf accretion in intermediate polars

    Full text link
    We investigate the effects of tidally induced asymmetric disc structure on accretion onto the white dwarf in intermediate polars. Using numerical simulation, we show that it is possible for tidally induced spiral waves to propagate sufficiently far into the disc of an intermediate polar that accretion onto the central white dwarf could be modulated as a result. We suggest that accretion from the resulting asymmetric inner disc may contribute to the observed X-ray and optical periodicities in the light curves of these systems. In contrast to the stream-fed accretion model for these periodicities, the tidal picture predicts that modulation can exist even for systems with weaker magnetic fields where the magnetospheric radius is smaller than the radius of periastron of the mass transfer stream. We also predict that additional periodic components should exist in the emission from low mass ratio intermediate polars displaying superhumps.Comment: 9 pages, 5 figures, accepted for publication in MNRA
    • …
    corecore