260 research outputs found
An angle-resolved photoemission spectral function analysis of the electron doped cuprate Nd_1.85Ce_0.15CuO_4
Using methods made possible by recent advances in photoemission technology,
we perform an indepth line-shape analysis of the angle-resolved photoemission
spectra of the electron doped (n-type) cuprate superconductor
Nd_1.85Ce_0.15CuO_4. Unlike for the p-type materials, we only observe weak mass
renormalizations near 50-70 meV. This may be indicative of smaller
electron-phonon coupling or due to the masking effects of other interactions
that make the electron-phonon coupling harder to detect. This latter scenario
may suggest limitations of the spectral function analysis in extracting
electronic self-energies when some of the interactions are highly momentum
dependent.Comment: 8 pages, 5 figure
Performance based specification for road foundation materials
UK Pavement foundations are currently designed using a method specification whereby tightly specified materials are constructed using specific compaction methods and layer thickness. This process does not necessarily guarantee the performance of the materials, but it is assumed to be adequate based on past experience. However, it can be inefficient, leading to unnecessary restrictions when using stabilised, recycled or marginal materials and/or the inappropriate use of good quality aggregates.
The UK Highways Agency (HA) funded a recently completed three-year research project to produce a draft performance-based specification for road foundations. The performance-based specification aims to enable more appropriate and efficient use of a wider range of materials, both natural and recycled. The performance parameters required of the materials were established as the stiffness and the resistance to permanent deformation, with both measured, ideally, in the laboratory for design purposes and during construction to ensure their performance on site. Pre-construction trials to demonstrate adequate material performance (both as individual layers and as a composite structure) are expected to feature prominently when the new approach is adopted. A further HA-funded project started in January 2000 to evaluate the implementation of this new specification.
This paper outlines the philosophy of the draft performance-based specification produced, including what needs to be measured and how and when it should be measured. Its impact on the highways industry is then discussed
A comparison of trackbed design methodologies: a case study from a heavy haul freight railway
One of the major roles of railway trackbed layers is to reduce vehicle induced stresses applied to the underlying subgrade to a level that limits the progressive build up of permanent deformation. The ability of trackbed layers to satisfy this requirement is dependent upon the materials used for construction and their thickness. Numerous design methods, (both empirical and analytical), have been developed across the World to evaluate trackbed design thickness. However, where there is limited information or experience of previous trackbed design with the specific materials or site conditions under consideration, the choice of methodology becomes one of engineering judgment, in assessing the significance and reliability of the design input parame-ters.
This paper describes a number of design methods which were assessed in a recent project to design a new heavy haul freight railway trackbed, founded on moisture sensitive subgrades, using locally available materials for the track support layers. The produced design thicknesses for each of the methods are compared for differing subgrade conditions. The results show considerable variation of thicknesses from each method with little consistent pattern to the variation. Reasons for these variations are suggested and the choice of the final design used for specific subgrade conditions are presented together with appropriate justification. Concluding on these issues, recommendations are made for a more considered approach to trackbed design
Nature of Correlated Motion of Electrons in the Parent Cobaltate Superconductors
Recently discovered class of cobaltate superconductors (Na0.3CoO2.nH2O) is a
novel realization of interacting quantum electron systems in a triangular
network with low-energy degrees of freedom. We employ angle-resolved
photoemission spectroscopy to uncover the nature of microscopic electron motion
in the parent superconductors for the first time. Results reveal a large
hole-like Fermi surface (consistent with Luttinger theorem) generated by the
crossing of super-heavy quasiparticles. The measured quasiparticle parameters
collectively suggest a two orders of magnitude departure from the conventional
Bardeen-Cooper-Schrieffer electron dynamics paradigm and unveils cobaltates as
a rather hidden class of relatively high temperature superconductors.Comment: 5 pages, 4 figures, 1 tabl
Pretreatment with beta-blockers and the frequency of hypokalemia in patients with acute chest pain
Plasma potassium concentration was measured at admission in 1234 patients who presented with acute chest pain. One hundred and ninety five patients were on P blockers before admission. The potassium concentrations of patients admitted early (within four hours of onsetof symptoms) were compared with those admitted later (4-18 hours after onset of symptoms). There was a transient fall in plasma potassium concentrations in patients not pre-treated with , B blockers. This was not seen in patients who had been on P blockers before admission. Nonselective, B blockers were more effective than cardioselective agents in maintaining concentrationsof plasma potassium. These findings suggest a mechanism for the beneficial effects of ,B blockers on morbidity and mortality in acute myocardial infarction
Possible Z2 phase and spin-charge separation in electron doped cuprate superconductors
The SU(2) slave-boson mean-field theory for the tt'J model is analyzed. The
role of next-nearest-neighbor hopping t' on the phase-diagram is studied. We
find a pseudogap phase in hole-doped materials (where t'<0). The pseudo-gap
phase is a U(1) spin liquid (the staggered-flux phase) with a U(1) gauge
interaction and no fractionalization. This agrees with experiments on hole
doped samples. The same calculation also indicates that a positive t' favors a
Z2 state with true spin-charge separation. The Z2 state that exists when t' >
0.5J can be a candidate for the pseudo-gap phase of electron-doped cuprates (if
such a phase exists). The experimental situation in electron-doped materials is
also addressed.Comment: 6 pages, 2 figures, RevTeX4. Homepage http://dao.mit.edu/~wen
Thin accretion disc with a corona in a central magnetic field
We study the steady-state structure of an accretion disc with a corona
surrounding a central, rotating, magnetized star. We assume that the
magneto-rotational instability is the dominant mechanism of angular momentum
transport inside the disc and is responsible for producing magnetic tubes above
the disc. In our model, a fraction of the dissipated energy inside the disc is
transported to the corona via these magnetic tubes. This energy exchange from
the disc to the corona which depends on the disc physical properties is
modified because of the magnetic interaction between the stellar magnetic field
and the accretion disc. According to our fully analytical solutions for such a
system, the existence of a corona not only increases the surface density but
reduces the temperature of the accretion disc. Also, the presence of a corona
enhances the ratio of gas pressure to the total pressure. Our solutions show
that when the strength of the magnetic field of the central neutron star is
large or the star is rotating fast enough, profiles of the physical variables
of the disc significantly modify due to the existence of a corona.Comment: Accepted for publication in Astrophysics & Space Scienc
Electron Dynamics in NdCeCuO: Evidence for the Pseudogap State and Unconventional c-axis Response
Infrared reflectance measurements were made with light polarized along the a-
and c-axis of both superconducting and antiferromagnetic phases of electron
doped NdCeCuO. The results are compared to
characteristic features of the electromagnetic response in hole doped cuprates.
Within the CuO planes the frequency dependent scattering rate,
1/, is depressed below 650 cm; this behavior is a
hallmark of the pseudogap state. While in several hole doped compounds the
energy scales associated with the pseudogap and superconducting states are
quite close, we are able to show that in NdCeCuO
the two scales differ by more than one order of magnitude. Another feature of
the in-plane charge response is a peak in the real part of the conductivity,
, at 50-110 cm which is in sharp contrast with the
Drude-like response where is centered at . This
latter effect is similar to what is found in disordered hole doped cuprates and
is discussed in the context of carrier localization. Examination of the c-axis
conductivity gives evidence for an anomalously broad frequency range from which
the interlayer superfluid is accumulated. Compelling evidence for the pseudogap
state as well as other characteristics of the charge dynamics in
NdCeCuO signal global similarities of the cuprate
phase diagram with respect to electron and hole doping.Comment: Submitted to PR
Oral Fluid–Based Biomarkers of Alveolar Bone Loss in Periodontitis
Periodontal disease is a bacteria-induced chronic inflammatory disease affecting the soft and hard supporting structures encompassing the teeth. When left untreated, the ultimate outcome is alveolar bone loss and exfoliation of the involved teeth. Traditional periodontal diagnostic methods include assessment of clinical parameters and radiographs. Though efficient, these conventional techniques are inherently limited in that only a historical perspective, not current appraisal, of disease status can be determined. Advances in the use of oral fluids as possible biological samples for objective measures of current disease state, treatment monitoring, and prognostic indicators have boosted saliva and other oral-based fluids to the forefront of technology. Oral fluids contain locally and systemically derived mediators of periodontal disease, including microbial, host-response, and bone-specific resorptive markers. Although most biomarkers in oral fluids represent inflammatory mediators, several specific collagen degradation and bone turnover-related molecules have emerged as possible measures of periodontal disease activity. Pyridinoline cross-linked carboxyterminal telopeptide (ICTP), for example, has been highly correlated with clinical features of the disease and decreases in response to intervention therapies, and has been shown to possess predictive properties for possible future disease activity. One foreseeable benefit of an oral fluid–based periodontal diagnostic would be identification of highly susceptible individuals prior to overt disease. Timely detection and diagnosis of disease may significantly affect the clinical management of periodontal patients by offering earlier, less invasive, and more cost-effective treatment therapies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73247/1/annals.1384.028.pd
- …