224 research outputs found

    Intracellular control of renin release - an overview

    Get PDF

    Liberators of NO exert a dual effect on renin secretion from isolated mouse renal juxtaglomerular cells

    Get PDF
    This study aimed to examine the role of nitric oxide (NO) in the regulation of renin secretion from renal juxtaglomerular (JG) cells. Using primary cultures of mouse renal JG cells, we found that sodium nitroprusside (SNP) and 3-morpholino-sydnonimin-hydrochloride (SIN-1), two structurally different liberators of NO, led to a transient inhibition during the first hour followed by a marked dose-dependent stimulation of renin secretion lasting for an additional 20 h. This stimulatory effect was blunted by methylene blue (50 microM) and was reversible within minutes after removal of the NO liberators. SNP and SIN-1 also stimulated guanylate cyclase activity in the cultures with a maximum within the first hour of incubation. Increasing intracellular guanosine 3',5'-cyclic monophosphate levels by 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (100 microM) or by atrial natriuretic peptide (10 nM) decreased basal renin secretion but did not inhibit the effect of SNP. The stimulatory effect of SNP was not related to adenosine 3',5'-cyclic monophosphate levels in the JG cells and was blunted after chelation of extracellular calcium by 2 mM ethylene glycol-bis(beta-amino-ethyl ether)-N,N,N'N'-tetraacetic acid. Taken together, our findings suggest that liberators of NO have two effects on renin secretion from isolated JG cells: an inhibitory effect mediated by stimulation of soluble guanylate cyclase activity and a stimulatory effect mediated by an as yet unknown pathway that requires extracellular calcium

    Lack of direct evidence for a functional role of voltage-operated calcium channels in juxtaglomerular cells

    Get PDF
    In this study we have examined the role of voltage-gated calcium channels in the regulation of calcium in juxtaglomerular cells. Using a combination of patch-clamp and single-cell calcium measurement we obtained evidence neither for voltage-operated calcium currents nor for changes of the intracellular calcium concentration upon acute depolarizations of the cell membrane. Increases of the extracellular concentration of potassium to 80 mmol/l depolarized the juxtaglomerular cells close to the potassium equilibrium potential, but did not alter the intracellular calcium concentration neither in patch-clamped nor in intact Furaester-loaded cells. Moreover, basal renin secretion from a preparation enriched in mouse juxtaglomerular cells and from rat glomeruli with attached juxtaglomerular cells was not inhibited when extracellular potassium was isoosmotically increased to 56 mmol/l. In mouse kidney slices, however, depolarizing potassium concentrations caused a delayed inhibition at 56 mmol/l and a delayed stimulation of renin secretion at 110 mmol/l. Taken together, our study does not provide direct evidence for a role of voltage-activated calcium channels in the regulation of calcium and renin secretion in renal juxtaglomerular cells

    Cyclosporin A inhibits PGE2 release from vascular smooth muscle cells

    Get PDF
    The influence of the fungoid undecapeptide cyclosporin A (CyA) on PGE2 release from cultured rat aortic smooth muscle cells was investigated in this study. We found that CyA time and concentration dependently (ED50:500 ng/ml) inhibited PGE2 release from the cells. CyA attenuated both basal and PGE2 release evoked by angiotensin II (10(-10)-10(-6) M), arginine vasopressin (10(-10)-10(-6) M) and ionomycin (10(-9)-10(-6) M). CyA (1 microgram/ml) did not affect the conversion of exogenous arachidonic acid (1 microM) into PGE2. The inhibitory effect of CyA was neutralized by high concentrations of the calcium ionophore ionomycin (greater than 3 X 10(-6) M). Taken together our results indicate that CyA inhibits both basal and vasoconstrictor evoked PGE2 release from vascular smooth muscle by impairing the availability of free arachidonic acid rather than by inhibiting the conversion of arachidonic acid into PGE2

    NaCl transport stimulates prostaglandin release in cultured renal epithelial (MDCK) cells

    Get PDF
    Prostaglandins (PGs) can modulate a variety of renal functions, including Na+ and Cl- reabsorption. However, it is not known if a direct interdependence exists between PG synthesis and transport activity. The present study was done to find out whether or not the rate of NaCl transport has an influence on PG synthesis in renal tubular cells. For our studies we used cultures of so-called high-resistance MDCK cells, which were originally derived from canine kidney. This cell type has a loop diuretic- and ouabain-sensitive NaCl transport that can be enhanced by activation of the adenylate cyclase (AC). In MDCK cell cultures we found that each state of increased NaCl transport during stimulation of AC by either epinephrine (10(-6) M), isoprenaline (10(-5) M), or forskolin (10(-5) M) was accompanied by a twofold increase in PG release. During inhibition of NaCl transport by furosemide (10(-4) M) or ouabain (2 X 10(-4) M), stimulation of AC failed to increase PGE2 release, whereas basal PG production was not inhibited by either furosemide or ouabain. Furthermore, PG formation during activation of AC was dependent on the concentration of extracellular Na+, whereas PG formation in the absence of activators of AC was independent of extracellular Na+. These results suggest that increased NaCl transport stimulates PG formation in cultures of high-resistance MDCK cells

    Erythropoietin production by fetal mouse liver cells in response to hypoxia and adenylate cyclase stimulation

    Get PDF
    This study was done to investigate aspects of control of extrarenal erythropoietin (Ep) production. To this end we studied the effects of three stimuli of renal Ep production in the adult, i.e. hypoxia, cobalt, and activation of adenylate cyclase on Ep generation by cultured fetal mouse liver cells. The fetal liver was taken as a model for extrarenal Ep production because this organ is considered the predominant site of extrarenal Ep production. We found that Ep production by the cells increased as the oxygen concentration was decreased in the incubation atmosphere from 20% to 1%. Cobalt (10(-4)-10(-5) M) had no effect on Ep production. Activation of adenylate cyclase by forskolin (10(-5) M) or isoproterenol (10(-5) M) greatly enhanced Ep production. These findings indicate that the Ep-stimulating effect of cobalt is specific for the kidney. However, oxygen depletion and activation of adenylate cyclase seem to be more general stimuli in Ep-producing cells. Furthermore we found that Ep production in hypoxia correlated with lactate formation in the cultured liver cells. This finding suggests that Ep production in fetal livers under hypoxic conditions parallels the shift from aerobic to anaerobic cellular energy metabolism

    Mechanism of NaCl transport-stimulated prostaglandin formation in MDCK cells

    Get PDF
    Recently we have found that stimulation of NaCl transport in high-resistance MDCK cells enhances their prostaglandin formation. In the present study, we investigated the mechanisms by which prostaglandin formation could be linked to the ion transport in these cells. We found that stimulation of transport caused a transient stimulation of prostaglandin formation lasting 5-10 min. The rise in prostaglandin formation was paralleled by a rise of free intracellular arachidonic acid. Analysis of membrane lipids revealed that the rise of free arachidonic acid was paralleled by a loss of arachidonic acid from polyphosphoinositides. We failed to obtain indications for the stimulation of calcium-dependent phospholipase A2. However, we did obtain evidence that the incorporation of arachidonic acid into phospholipids was diminished during stimulation of ion transport, indicating a decreased rate of reesterification. Despite the fact that there was no significant fall in total cellular ATP on stimulation of ion transport, we found a high and transient rise of lactate production of the cells on stimulation of the ion transport indicating an alteration of the ADP/ATP ratio. Moreover, prostaglandin formation and lactate formation were linearly correlated in this situation. When glucose utilization was inhibited by mannoheptulose, the rise in lactate formation was abolished, whereas that of PG formation was unaltered, indicating that lactate formation and prostaglandin formation were not causally linked on stimulation of ion transport. Our results suggest that an increase in the rate of sodium chloride transport by MDCK cells stimulates formation by an inhibition of reesterification of free arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS

    Pharmacokinetics of recombinant human erythropoietin applied subcutaneously to children with chronic renal failure

    Get PDF
    The single-dose pharmacokinetics of recombinant human erythropoietin (rHuEPO) given SC was investigated in 20 patients aged 7-20 years at different stages of chronic renal failure. In a pilot study we confirmed the lower bioavailability of the drug in 2 children when given SC compared with the IV route (24% and 43%, respectively). Following administration of 4,000 units/m2, rHuEPO SC effective serum erythropoietin concentrations increased from a mean baseline level (+/- SD) of 23 +/- 13 units/l to a mean peak concentration of 265 +/- 123 units/l, which was reached after 14.3 +/- 9.4 h, followed by a slow decline until baseline values were attained at 72 h. Mean residence time was 30 +/- 9 h and mean elimination half-time 14.3 +/- 7 h. The single-dose kinetics of SC rHuEPO in children with different degrees of renal failure are comparable to those in adult patients. Possibly, the higher efficacy of SC rHuEPO in patients with renal anaemia compared with IV rHuEPO is related to its prolonged action

    Evaluation of the stability of human erythropoietin in samples for radioimmunoassay

    Get PDF
    Radioimmunoassays for erythropoietin are limited so far to a few specialized laboratories and this requires transport and storage of samples. We therefore tested the stability of immunoreactive erythropoietin in serum and plasma samples obtained from a uremic and a nonuremic anemic patient. No significant change in the concentration of immunoreactive erythropoietin was found in either serum or plasma samples for up to 14 days of storage. This type of stability was observed no matter whether the samples were stored at room temperature, 4 degrees C, or -20 degrees C. There was no difference between the estimates of erythropoietin in serum and heparinized plasma. Validity of the radioimmunoassay used in this study was demonstrated by parallelism of dilution curves of test specimens and the 2nd International Reference Preparation for erythropoietin and by a close correlation between the immunoreactivity and the bioactivity of the hormone, as assessed in the same samples by the exhypoxic polycythemic mouse bioassay. In conclusion the data obtained clearly indicate that the necessity of storage and transport of clinical samples does not limit the practicability of the radioimmunoassay for erythropoietin

    Cyclosporine A enhances renin secretion and production in isolated juxtaglomerular cells

    Get PDF
    Cyclosporine A enhances renin secretion and production in isolated juxtaglomerular cells. Stimulation of the renin-angiotensin system is a major side effect of the fungoid immunosuppressant cyclosporine A (CyA). The aim of this study was to find out whether or not this effect of CyA results from a direct interaction with renal juxtaglomerular (JG) cells, which are the site of renal renin synthesis and release. Using primary cell cultures from rat renal cortex containing more than 80% JG cells, we found that CyA (0.01 to 10 µg/ml) stimulated renin secretion threefold. This stimulation was paralleled by a dose-dependent twofold increase of inactive renin within the cells, while the active intracellular renin remained the same. In order to identify a possible second messenger which could mediate the effects of CyA on JG cells, we examined the simultaneous effects of a single concentration of CyA (1 µg/ml) on renin secretion, prostaglandin formation and intracellular cAMP concentration. However, prostaglandin formation and cAMP were not detectably altered by CyA in experiments where renin secretion was significantly enhanced. Our results indicate that cyclosporine A stimulates renin secretion and renin synthesis by a direct effect on renal juxtaglomerular cells. This action of CyA is not mediated by changes in cellular prostaglandin or intracellular cAMP
    corecore