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Abstract. In this study we have examined the role of voltage- 
gated calcium channels in the regulation of calcium in jux- 
taglomerular cells. Using a combination of patch-clamp and 
single-cell calcium measurement we obtained evidence nei- 
ther for voltage-operated calcium currents nor for changes 
of the intracellular calcium concentration upon acute de- 
polarizations of the cell membrane.  Increases of the extra- 
cellular concentration of potassium to 80 mmol/1 depolar- 
ized the juxtaglomerular cells close to the potassium equi- 
librium potential, but did not alter the intracellular calcium 
concentration neither in patch-clamped nor in intact Fura- 
ester-loaded cells. Moreover,  basal renin secretion from a 
preparation enriched in mouse juxtaglomerular cells and 
from rat glomeruli with attached juxtaglomerular cells was 
not inliibited when extracellular potassium was isoosmoti- 
cally increased to 56 mmol/1. In mouse kidney slices, how- 
ever, depolarizing potassium concentrations caused a de- 
layed inhibition at 56 mmol/1 and a delayed stimulation of 
renin secretion at 110 mmol/1. Taken together, our study 
does not provide direct evidence for a role of voltage-acti- 
vated calcium channels in the regulation of calcium and 
renin secretion in renal juxtaglomerular cells. 
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the regulation of [Ca]i in JG cells and in consequence in the 
regulation of renin secretion (Churchill 1988). It has been 
found that  calcium antagonists, such as verapamil, have a 
stimulatory effect on renin secretion in vivo (Abe et al. 
1983). A rise of extracellular potassium that depolarizes JG 
cells (Fishman 1976) inhibits renin secretion in a calcium- 
dependent fashion both in isolated kidneys (Fray 1978) and 
in renal cortical slices (Churchill 1980; Matsumura et al. 
1984; Park et al. 1981; Churchill 1987; Frax et al. 1987).This 
effect of potassium is attenuated by calcium channel block- 
ers  (Churchill 1980, 1987, 1988; Park et al. 1981). Con- 
versely, calcium channel agonists, such as Bay K 8644, were 
found to inhibit renin secretion from kidney slices (Fray et 
al. 1987; Matsumura et al. 1985). 

A direct demonstration of voltage-gated calcium chan- 
nels and an investigation of their possible role in the regu- 
lation of intracellular calcium in renal juxtaglomerular cells 
is still lacking. Recently we have presented a method to gain 
insight into electrical events and the regulation of intracell- 
ular calcium in single JG cells (Kurtz and Penner 1989). 
Using this technique we have studied the role of voltage- 
gated calcium channels in the regulation of calcium in JG 
cells. Much to our surprise, however, we did not obtain any 
evidence for a functional role of voltage-gated Ca 2§ chan- 
nels in mouse renal JG cells. 

Introduction 

The regulation of exocytosis of renin-containing granules 
from renal juxtaglomerular (JG) cells displays an excep- 
tional feature. While the intracellular concentration of cal- 
cium either initiates, facilitates or maintains secretion in 
typical exo- and endocrine cells (Penner and Neher 1988), 
it appears to be inhibitory for renin secretion (Churchill 
1988). On the basis of indirect evidence it is thought that 
voltage-gated calcium channels play an important role in 
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Materials and methods 

Tissue preparation for patch-clamp study 

For one preparation both kidneys from a female NMRI (Naval Medical 
Research Institute) mouse, 6-8 weeks old, were used. The animal was 
killed by cervical dislocation, and the kidneys were removed, decap- 
sulated, and minced with a scalpel blade.The material was incubated 
with gentle shaking at 37~ in 30 ml standard saline solution (in 
mmol/l: 140 NaC1, 2.8 KC1, 2 CaC12, 1 MgC12, 11 glucose, 10 HEPES/ 
NaOH, pH 7.2) supplemented with 30 mg collagenase. After 25 rain 
the suspension was sifted over 150-~m and 50-/zm screens. The material 
retained by the 50-/~m screen was washed in 10 ml saline and settled 
in a bench-top centrifuge. The pellet.was resuspended in 1 ml saline 
and subsequently plated in the recording chamber. The tissues that 
attached to the glass surface consisted mainly of glomeruli, which had 
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afferent arterioles of different lengths. From these structures cells at a 
distance between 5 #m and 100/~m were selected for patch-clamp and 
calcium measurement experiments (Kurtz and Penner 1989). 

Patch-clamp experiments 

Experiments were performed at room temperature in standard saline 
buffer. Patch-clamp measurements were done with Sylgard-coated pi- 
pettes (5-10 Mf~) in whole-cell configuration. The standard solution 
for filling pipettes (intracellular solution) contained (in mmol/1) 135 
potassium glutamate, 10 NaC1, 1 MgC12, 10 HEPES/NaOH, 0.5 Mg/ 
ATP, 0.3 GTP, 0.1 Fura-2 pentapotassium salt (pH 7.2). 

Fluorescence measurements on single cells were performed as de- 
scribed (Neher 1988). Patched ceils were loaded with Fura-2 by diffu- 
sion from the recording pipette and intact cells were loaded with Fura- 
2 acetoxymethyl ester according to standard protocols. Fluorescence 
of Fura-2 was excited alternately by light at 360 nm and 390 nm by 
means of a rotating filter wheel fitted to a slot in the excitation pathway 
of the microscope. [Ca)i was calculated from the fluorescence ratio 
(Grynkiewicz et al. 1985). Application of angiotensin II, ionomycin 
and buffer containing high K was done by pressure ejection from a 
second pipette (Kurtz and Penner 1989). 

For this study a total of 150 cells~prepared from 54 mice was 
examined. 

Experiments on renin secretion 

The effect of extracellular potassium on renin secretion from mouse 
and rat renal tissues was examined. 

Mouse tissue 

Renin release from tissue suspension. Material retained by the 50-/zm 
screen, as described above, was washed, loaded on two Sephadex 
G-50 columns (100 #1 bed volume) and superfused with standard buffer 
at a rate of 100 #l/rain. Effluent was sampled at 5-rain intervals, frozen 
and stored at - 20 ~ C until assay of renin activity. Renin activity was 
determined by the generation of angiotensin I from the plasma of 
bilaterally nephrectomized rats (Kurtz et al. 1986). Angiotensin I was 
determined by radioimmunoassay. Superfusion was performed for 120 
min. Samples were taken between the 50th and l l5th rain of superfu- 
sion. Changes of buffers were made between the 75th and 95th rain, 
as a rule. 

Renin release from kidney slices. Both kidneys of a mouse were im- 
mediately removed after cervical dislocation and cooled for 5 rain at 
4~ in standard buffer (in mmol/l: 118.5 NaC1, 4.7 KC1, 2.0 CaC12, 
1.2 KH2PO4, 1.2 MgSO4, 25 NaHCO3, 10 glucose) equilibrated with 
95% 02/5% CO2. The kidneys were decapsulated and cut into slices 
of 100/~m thickness with a McIlwain tissue chopper (Mickle Lab. 
Engineering Co., Guildford, U.K.). The slices were washed twice in 
30 ml coded and gassed standard buffer for 5 min. The slices obtained 
from 1 mouse were subsequently transferred to six petri dishes (7 cm 2) 
containing 2 ml gassed and p rewarmed (37~ standard buffer. The 
dishes were placed on a heater maintaining a temperature of 37 ~ and 
they were gassed continuously with 95% OJ5% CO2. Buffer was 
exchanged completely every 15 min. Redrawn buffer was immediately 
centrifuged at 4 ~ at 9000 g for 5 min and the supernatants were 
subsequently frozen and stored at - 80 ~ until assay of renin. Exper- 
iments were run for seven 15-min cycles. Potassium concentration was 
changed isoosmotically during the 4th and 5th cylces. Renin releasing 
rates were related to the value obtained in the 3rd cycle (i.e. 100% of 
control). Experiments with material obtained from 7 mice were per- 
formed. 

Rat  tissue 

Renin release from glomeruli. Male Sprague-Dawley rats (250-350 g) 
with previous free access to food and water were anesthetized with 

sodium amobarbital (12.5 rag/100 g body weight i.p.). Batches of 300 
glomeruli with attached juxtaglomerular cells were prepared by the 
magnetic iron technique and were mounted separately in five polyeth- 
ylene catheters (Blendstrup et al. 1975). The glomeruli were held by 
a magnetic field during superfusion at a rate of 10#l/rain from one of 
two pumps (Braun, Melsungen, FRG) each mounted with five infusion 
syringes. At zero time the superfusion was shifted to the second pump 
with five syringes containing experimental solution or control Ringer 
solution. All experiments were performed at a temperature of 30~ 
The glomeruli were prepared in a bicarbonate Ringer solution of the 
following composition (mmol/1): NaC1 101.0, NaHCO3 17.5, KCI 7.0, 
CaC12 2.0, MgSO4 1.2, NaH2PO4 1.2, glucose 11.0 and sucrose 30.0, 
giving a calculated osmolality of 301 mosmol/kg. The solution was 
adjusted to pH 7.3 by bubbling with 4% COz and 96% 02 at 37~ 
The renin concentration was measured by radioimmunoassay of the 
angiotensin I generated (Poulsen and Jorgensen 1974). A 25 #I sample 
of superfusate was added to 25 ~ul mixture of angiotensin I antibody 
and substrate-enriched rat plasma. The samples were incubated for 3 h 
at 37 ~ C. After the experiments the remaining renin in the batches was 
extracted by freezing and thawing three times. The absolute value of 
renin release in the last period preceeding the zero time was used for 
normalizing the renin release rate in the individual experiments. The 
term 'total renin content' refers to the amount of renin remaining in 
the glomeruli after the experiment plus the amount of renin released 
during the experiment. The absolute renin values are expressed in 
terms of standard Goldblatt Units (GU). The significances were cal- 
culated by Student's t-test with Bonferronis reduction for multiple 
comparisons. P <0.05 was considered significant. 

Results 

As  a first app roach  to d e m o n s t r a t e  the  exis tence  of  vol tage-  
ga ted  ca lc ium channels  we  l o o k e d  for  p o t e n t i a l - d e p e n d e n t  
ca lc ium currents  in J G  cells. Typica l  cur ren t  records  unde r  
vo l tage  c l amp  (Fig.  1) and the  resul t ing cu r ren t -vo l t age  
re la t ionship  (Fig. 1) in a J G  cell  unde r  s tandard  condi t ions  
display inward  and ou twa rd  rect i fying po ta s s ium currents  
(Kur tz  and P e n n e r  1989). To r e n d e r  v o l t a g e - o p e r a t e d  cal- 
c ium currents  m o r e  p r o m i n e n t  these  rect i fying currents  
w e r e  b locked  by subst i tut ing in t race l lu lar  po tass ium by ce- 
s ium and by addi t ion  of  t e t r a e t h y l a m m o n i u m  (10 mmol/1) 
to ex te rna l  and in te rna l  solut ions.  M o r e o v e r ,  in t race l lu lar  
ca lc ium was bu f fe red  to 150 nmol/1 (with a mix tu re  of  in ter-  
nal  C a E G T A / K 2 E G T A  at a ra t io  of  5/5 retool/ l)  to avo id  
in t e r f e r ence  wi th  ca lc ium-ac t iva ted  chlor ide  currents  (Kur tz  
and P e n n e r  1989), and ex t race l lu la r  ca lc ium was raised to 
10 mmol/1 to increase  the  inward  dr iving force  for  calc ium.  
H o w e v e r ,  the  resul t ing cur ren t  records  (Fig. 1) and the  
resul t ing cu r ren t -vo l t age  re la t ionship  (Fig. 1) did n o t  p ro-  
v ide  ev idence  for  inward  currents  of  the  k ind  typical  for  
vo l t age -ga t ed  ca lc ium currents  (n = 9). 

As  an a l te rna t ive  app roach  to searching  for po ten t ia l -  
o p e r a t e d  ca lc ium channels  we  e x a m i n e d  the  inf luence  of  
the  m e m b r a n e  po ten t i a l  on  the  in t race l lu lar  concen t r a t i on  
of  calc ium.  Typica l  r ecord ings  of  in t racel lu lar  ca lc ium in J G  
cells dur ing  r epe t i t i ve  m e m b r a n e  de-  and hype rpo la r i za t ion  
are  shown in Fig. 2. A p p a r e n t l y ,  m e m b r a n e  depo la r i za t ion  
had no effect  on  [Ca]i (n = 100), whi le  i onomyc in  (n = 6) 
(Fig. 2A)  and angio tens in  I I  (n = 46) (Fig. 2B) el ic i ted large 
rises of  [Ca]i in the  cells. Converse ly ,  [Ca]i inc reased  dur ing  
hyperpo la r i z ing  pulses  for  4 min  af ter  the  appl ica t ion  of  
angio tens in  II ,  indicat ing an increase  of  the  ca lc ium p e r m e -  
abili ty of  the  cell m e m b r a n e  dur ing  this p e r i o d  (Penne r  et  
al. 1988). These  findings d e m o n s t r a t e  that  the  t echn ique  
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Fig. l. Steady-state whole cell currents evoked by stepping the mem- 
brane potential from -70 mV to various levels (from -115 to +50 
mV). Left upper: standard external and internal solutions; left lower: 
external solution supplemented with 10 retool/1 tetraethylammonium 
(TEA) and 10 retool/1 CaC12; internal solution supplemented with 10 
mmol/1 TEA, CaEGTA/K2EGTA 5/5 retool/l, potassium glutamate 
substituted by CsClz. Right: steady-state current-voltage relationships 
derived from left panels (0 ,  upper; O, lower panel) 
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Fig. 2. Intracellular calcium concentration in mouse juxtaglomerular 
(JG) cells during hyper- and depolarizing voltage pulses and applica- 
tion of ionomycin (5 mg/1) (arrow, upper panel) and angiotensin II 
(1/~mol/1) (bar, lower panel) 

applied allows the detection of changes of intracellular cal- 
cium brought about by unspecific (ionomycin) or receptor- 
activated, second-messenger-operated increases of the cal- 
cium permeability of JG cell plasma membranes.  

Under  voltage clamp, increases of the extracellular con- 
centration of potassium evoked currents with a reversal 
potential close to the potassium equilibrium potential 
(n = 15) (Fig. 3A), indicating that the membrane potential 
is close to the potassium equilibrium potential. Increases of  
potassium had no effect on [Call neither in voltage-clamped 
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Fig. 3. A. Recordings of membrane potential, whole-cell currents and 
intracellular calcium concentration in, a JG cell during repetitive ap- 
plication of high extracellnlar potassium (80 mmol/1) as indicated by 
arrows. B. Recording of intracellula~ calcium in an intact JG cell loaded 
with Fura 2 acetoxymethyl ester during application of high extracellular 
potassium. 
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(n = 15) (Fig. 3A) nor  in current -c lamped ( n =  10) (not 
shown) J G  cells. To rule out the possibil i ty that  the patch-  
clamp condit ions could have caused the functional  disap- 
pearance  of po ten t ia l -opera ted  calcium channels,  we also 
examined the effect of high extracel lular  potass ium on intact  
JG cells loaded with Furaes te r  (n = 16) (Fig. 3B). Again ,  
potass ium depolar iza t ion did not  al ter  the intracel lular  con- 
centrat ion of calcium. 

Since we did not  obtain direct evidence for the existence 
of vol tage-gated calcium channels we looked  for a functional  
role of vol tage-opera ted  calcium channels in renin secret ion 
f romin tac t  J G  cells. To this end we measured  renin secret ion 
from the tissue p repara t ion  used for the exper iments  men-  
t ioned before.  The mater ia l  re ta ined  by the 50-#m sieve was 
loaded on Sephadex G-50 columns and superfused with 
extracel lular  buffer. Basal  renin release from the prepara-  
t ion was stable 3 0 - 4 0  min after onset  of the exper iment  
(Fig. 4A).  Add i t ion  of angiotensin II  (100 nmol/1) led to a 
reversible inhibit ion of renin secret ion to about  50 % of the 
control  value (Fig 4B). Change of the concentrat ion of 
extracel lular  potass ium (1 .4 -90  mmol/1) with s imultaneous 
changes of sodium, in o rder  to keep  the osmolal i ty constant ,  
did not  affect renin secret ion significantly (Fig. 5), al though 
there was a tendency towards  higher  renin secret ion rates 
at high extracel lular  potassium. A t  low concentrat ions of  
extracel lular  potass ium (0.7 mmol/1) renin secret ion tended  
to decrease.  Since the  inhibi tory effect of high extracel lular  
potass ium on renin secret ion was p redominan t ly  r epor ted  
for k idney slices, we also uti l ized this exper imenta l  m o d e l .  
And ,  in fact, raising the extracel lular  potass ium from 5 
mmol/1 to 56 mmol/1 caused a significant (p <0.05)  decrease 
of renin secret ion f rom mouse k idney slices (Table 1) with 
a delay of  15 min. However ,  with the same delay t ime an 
increase of extracel lular  potass ium to 112 mmol/1 led to a 
significant increase of spontaneous  renin release from kid- 
ney slices. 

To test whether  the lack of inhibit ion by high extracel- 
lular potass ium on renin secret ion from the prepara t ion  
enriched in mouse JG cells was specific for mouse renal  
tissue (Fig. 5), we also examined the effect of depolar izing 
concentrat ions of  potass ium on renin secret ion from rat  
superfused glomeruli .  The spontaneous  renin release f rom 
those superfused glomeruli  with a t tached juxtaglomerular  
cells decl ined slowly with t ime,  as seen in the semilog plot  
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Fig. 4. Upper panel: typical time course of spontaneous renin release 
from the tissue preparation used for patch-clamp and calcium meas- 
urement experiments. Data are mean + SEM of triplicate columns 
from one preparation. Lower panel: spontaneous renin release before, 
during and after addition of angiotensin II (100 nM) to the perfusate. 
Values are related to last sample before addition of angiotensin II 
(100% of control). Data are mean • SEM of eight independent ex- 
periments 

of Fig. 6. Addi t ion  of depolar izing amounts of KC1 (56 
mmol/1) under  isoosmotic condit ions even caused a stimu- 
lat ion of renin release.  The average basal  renin release rate  
( n = 4 3 )  at zero t ime was 6.81 + 0.98 (SE)/~GU/300 glo- 
merul i  over  12 min. The average renin content  of the batches 
of glomeruli  was 1.28 _+ 0.20 (SE) mGU/300 glomeruli  
( n=43 ) .  

Table 1. Effect of extracellular potassium concentration on renin secretion from mouse kidney 
slices a 

[K]o (mM) Renin secretion (%) aRerthefollowing times (min) 

15-30 30-45 45-60 60-75 75-90 90-105 105-120 

5 (n=13) 206 • 14 149 • 10 100 114 • 20 82 • t3 82 • i3 81 • 20 
28(n= 4) 208• 168• 14 100 115• 102• 93•  93•  
56(n=13) 190• 121• 9 100 86• 9 62• 82•  98• 

112(n= 5) 260• 207• i00 136• 10 135• 5* 95•  89• 12 

a Renin secretion rates are given as percentages (means _+ SE; n) of control period, for which 
the 45-60 min interval was chosen. Extracellular potassium concentration was isoosmotically 
changed from 5 mM to the indicated value during the 60th-75th and 70th-95th-min intervals. 
Absolute values for renin secretion during the control periods were 93 • 3 ng (mean _+ SE; 
(n = 35) angiotensin I/h over 15 min and for 100 mg wet weight 
* P <0.05 vs control series, which received 5 mM K throughout 
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Fig. 5. Spontaneous renin release from the tissue preparation after 
changing extracellular potassium to various concentrations between 
the 75th and 95th min of superfusion. Renin release during this period 
is related to that of the respective control period (50th-70th rain). 
Data are means +_ SEM of three independent experiments each 
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Fig. 6. Effects of depolarizing concentrations of KCI on renin release 
from superfused rat glomeruli. K was changed at time zero. Time 
control experiments (O, n = 18) show a slowly decreasing release rate. 
Depolarization induced by addition of 56 mM KC1 with simultaneous 
reduction of NaC1 by 56 mM stimulated renin release significantly 
(&, n = 15). Bars indicate _+ SE. Note the semilogarithmic scale 

Discussion 

Renin-containing cells in the afferent arterioles have been 
found to extend up to 100 #m from the glomerular vascular 
pole (Taugner et al. 1982). We have therefore focussed our 
experiments on this anatomical region. For this study we 
have examined 150 cells taken from a total of 54 mice and 
we have obtained no evidence for heterogeneities among 
the cells, an observation that is in accordance with recent 
studies (Btihrle et al. 1985; Kurtz and Penner 1989). Our 

primary aim was to examine the role of voltage-operated 
calcium channels in the regulation of intracellular calcium 
in renal JG cells. However, we obtained no evidence for the 
existence of voltage-activated calcium currents in mouse JG 
cells. 

The patch-clamp measurements did not reveal inwards 
currents that are typical for voltage-operated Ca 2+ channels 
(Bean et al. 1986; Yatani et al. 1987). Membrane depolari- 
zation should cause activation of calcium currents and in 
consequence rises of [Call (Becket et al. 1989). However, 
this maneuver was ineffective in mouse JG cells.To narrow- 
down possible artefacts due to very fast run-down ,kinetics 
of voltage-operated Ca 2§ channels under patch-clamp con- 
ditions (Tanita 1988) membrane depolarization was also 
induced by raising extracellular potassium in clamped and 
in intact JG cells. Also under these conditions [Ca]i did not 
change upon membrane depolarization (Fig. 3). 

The effect of depolarizing concentrations of potassium 
on renin secretion were dependent on the experimental 
model used. While high [K§ tended to increase renin 
secretion from the preparation used for the patch-clamp 
experiments (Fig. 5), it had a biphasic effect on renin secre- 
tion from mouse kidney slices (Table 1). At a concentration 
of 56 mmol/1, K caused a delayed reduction of spontaneous 
renin release. At a concentration of 112 mmol/l it led to an 
increase of renin release. When rat glomeruli with attached 
JG cells were used, depolarizing concentrations of K § (56 
mmogl) did not inhibit but in fact stimulated renin secretion 
from rat JG cells, when the change of potassium was made 
isoosmotically (Fig. 6). Although surprising at first view, 
the observed stimulation of renin secretion by high [K+]o is 
in accordance with the findings of Beierwaltes et al. (1981) 
and Frederiksen et al. (1975), obtained with similar prepa- 
rations of rat JG cells. It should be noted in this context 
that high extracellular potassium also stimulates renin se- 
cretion in the isolated perfused rat kidney (Fray 1980) and 
hog kidney slices (Park and Malvin 1978) if extracellular 
calcium is low, and inhibits it at normal or. high calcium 
concentrations (Churchill 1980, 1987; Matsumura 1984; 
Park et al. 1981; Fray et al. 1987, Fray 1980; Park and Malvin 
1978). Our finding that extracellular potassium at 56 mmol! 
1 inhibits renin secretion from mouse kidney slices fits with 
those observations. The inhibitory effect of potassium oc- 
curred with a delay of about 15 min, a time" interval that 
might have been overlooked in experiments performed by 
others, who used incubation times of 30 min or even longer 
and where renin secretion rates were calculated from the 
change of accumulative renin activity in the incubation 
buffer. The significant delay could suggest an indirect effect 
of potassium. Supportive to this idea is our observation that 
the concentration (and in consequence the potential) de- 
pendence of the potassium effect on renin secretion from 
renal slices does not fit well with the activation and inacti- 
vation of voltage-gated calcium channels. We have recently 
developed a hypothesis suggesting that extracellular potas- 
sium could affect renin secretion in a calcium-dependent 
fashion via a change of the JG cell volume, without activat- 
ing voltage-operated calcium channels (Kurtz 1990). More- 
over, the possibility cannot be excluded that the inhibitory 
effect of high potassium on renin secretion from kidney 
slices is mediated by the release of factors that in turn act 
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on JG cells via calcium channels. Such factors could, for 
instance, include endothelial-derived relaxing factor (Vidal 
et al. 1988) and endothelin (Raguki et al. 1988), which have 
been found to inhibit renin secretion from JG cells. A recent 
and very interesting finding in this context is that  endothelin 
causes contraction of rat aorta and portal vein by enhancing 
calcium entry (Borges et al. 1989). Both calcium entry and 
contraction by endothelin were blunted by low concentra- 
tions of dihydropyridines.~ Clear evidence, however, was 
provided in that study that 'endothelin did not activate volt- 
age-operated Ca 2+ channels. This finding suggests the ex- 
istence of calcium channels that are susceptible to organic 
channel blockers in a fashion typical for voltage-operated 
channels but are different from these. 

It could be possible, therefore, that the facilitatory ef- 
fect of organic calcium-channel blockers on renin secretion 
is also not due to the inactivation of voltage-operated Ca 2+ 
channels. A somewhat special effect to these drugs is that 
they already stimulate basal renin secretion (Kurtz et ai 
1986; May and Peart 1984; Antonipillai and Hor ton  1985; 
Henrich and Campbell 1986), while they do not affect cal- 
cium entry into unstimulated or resting smooth muscle cells 
(cf. Loutzenhiser and Epstein 1985). Circumstantial evi- 
dence, moreover,  suggests that the calcium channels in the 
juxtaglomerular region could have some unusual character- 
istics. For  instance, there is broad evidence that the con- 
strictory effect of angiotensin II  on afferent and efferent 
vessels is highly dependent on calcium entry (cf. Loutzen- 
hiser and Epstein 1985). Recently it was shown that the 
constrictory effect of  angiotensin II  is blunted by dihydro- 
pyridines in the proximal afferent vessel but is not at all 
affected in the efferent vessel (Carmines and Navar 1989) 
suggesting that the susceptibility of the calcium entry mech- 
anisms to organic calcium channel blockers changes strik- 
ingly from the proximal afferent to the efferent vessel. 
Churchill (1988) has pointed out that the inhibitory effect 
of angiotensin II  on renin secretion, which is associated with 

' depolarization of JG cells (Btihrle et al. 1985), is dependent 
on calcium entry but independent of voltage-operated Ca a+ 
channels. In addition the current-voltage relationship in rat 
JG cells does not display inward currents such as would be 
characteristic for the activation of voltage-operated Ca 2§ 
channels (Btihrle et at. 1985). On the other hand there is 
evidence for calcium entry in JG cells caused by angiotensin 
II  that is blocked by verapamil (Kurtz et al. 1985; Kurtz and 
Penner  1989; Fig, 2), F rom the observation that membrane 
hyperpolarization instead of depolarization enhances this 
calcium influx (Fig. 2B) we infer that this effect of angi- 
otensin II  is mediated by receptor-operated calcium chan- 
nels rather than by recruitment of covert voltage-operated 
channels. 

Evidence that receptor-operated Ca z+ channels are in 
fact susceptible to organic calcium channel blockers has 
already been provided (Borges et al. 1989). 

We will not doubt  the existence of voltage-operated 
Ca a+ channels in renal vasular smooth muscle tells. During 
our experiments we have observed that fragments of larger 
arteries, such as interlobary or arcuate arteries, respond 
with prompt  contraction upon exposure to high extracellular 
potassium. The afferent vessels, and in particular the jux- 
taglomerular region, however, were insensitive to high K 

but contracted promptly in response to angiotensin II. These 
preliminary observations could indicate that renal vascular 
smooth muscle cells more distant from the juxtaglomerular 
region contain voltage-operated Ca 2+ channels. The tight 
envelope with connective tissue, however, prevented suc- 
cessful patch-clamp recordings from smooth muscle cells in 
larger arteries, although we made a number  of  attempts. 

Summing up, our findings suggest that voltage-operated 
Ca 2§ channels play no direct role in renal JG cells. The 
effect of  extracellular potassium on renin secretion from 
renal slices awaits a definitive explanation, but it might be 
due to an indirect inhibitory effect of potassium. 
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