52 research outputs found

    Experimental investigations for the development of a 2pi fission fragment detector

    Get PDF
    In der vorliegenden Arbeit wurde die Möglichkeit der Realisierung eines 2-Pi-Spaltfragmentdetektors untersucht. Damit soll es möglich sein eine Information über die Kernladungszahl eines Fragments aus spontaner oder teilcheninduzierter Spaltung zu erhalten. Die Meßmethode ist daraufhin ausgelegt, daß der korrespondierende Partner eines im Detektor nachgewiesenen Spaltfragments in einer dicken Quelle oder einem dicken Target gestoppt wird und der Gamma-Zerfall dieses neutronenreichen, meist hoch angeregten Kerns in Ruhe erfolgt . Die emittierte Gamma-Strahlung ist somit weder Dopplerverschoben noch -verbreitert und kann von Germanium-Detektorarrays spektroskopiert werden. Durch die hohe Selektivität der Spaltfragmentdetektion läßt sich damit die Struktur seltener, besonders neutronenreicher Kerne untersuchen. Die Methode basiert auf der Messung des spezifischen Energieverlusts eines Spaltfragments mit Hilfe einer Gasionisationskammer und der anschließenden Messung der Restenergie des Spaltfragments mit Hilfe eines Silizium-Halbleiterdetektors. Hierzu wurden Messungen von Spaltfragmenten aus spontaner Spaltung von 252-Cf mit Hilfe eines Detektorteleskops [Goh94] in Koinzidenz mit einem hochreinen Germanium Detektor durchgeführt. Das Teleskop bestand aus einer Ionisationskammer, die mit einem elektrischen Feld arbeitete, das senkrecht zur mittleren Spaltfragmenttrajektorie verlief, sowie einem ionenimplantierten Si-Detektor. Damit wurde ein Auflösungsvermögen von Z/Delta-Z ~ ll für Molybdän (Z=42) und Z/Delta-Z ~ 10 für Ruthenium (Z=44) gemessen. Um den ionenimplantierten Si-Detektor durch einen kostengünstigeren Detektortyp ersetzen zu können, wurden PIN-Dioden als Detektoren für die Energie der Spaltfragmente getestet. Hierbei wurden die Testkriterien von Schmitt und Pleasonton [SP 66] zugrunde gelegt. Die PIN-Diode der Serienproduktion erreichte näherungsweise alle von Schmitt und Pleasonton angegebenen Kriterien und übertraf das Kriterium für Energieauflösung deutlich. Der Ansatz zur Entwicklung eines Detektors mit großem Raumwinkel ist eine Ionisationskammer, die ein elektrisches Feld besitzt, das parallel zur mittleren Spaltfragmenttrajektorie gerichtet ist. Eine solche Feldgeometrie läßt sich leichter auf einen großen Raumwinkel erweitern. Dies macht die ausschließliche Verwendung von Gitterelektroden notwendig, damit die Spaltfragmente die Elektroden ohne nennenswerten Energieverlust passieren können. Mit Hilfe der Methode der Finiten Elemente wurden Potentialverläufe in einer solchen Ionisationskammer simuliert und auf dieser Basis ein Prototyp konstruiert und gebaut, der mit einer Feldrichtung parallel zur mittleren Spaltfragmenttrajektorie arbeitet. Zum Test dieses Detektors wurde ein Experiment mit protoninduzierter Spaltung von 238-U am Van-de-Graaf-Beschleuniger des Instituts für Kernphysik der Universität Frankfurt am Main durchgeführt. Unter Hinzunahme eines hochreinen Ge-Detektors wurden Spaltfragment-Gamma-Koinzidenzen aufgenommen. Das Ansprechverhalten des Spaltfragmentdetektors wurde mit Hilfe der Energieverlustdaten von Northcliffe und Schilling [NS70] numerisch berechnet. Damit konnte ein Auflösungsvermögen von Z/Delta-Z ~ 29 für Yttrium (Z=39) erreicht werden. Dieses Auflösungsvermögen stimmt ungefähr mit dem von Sistemich et al. [SAB+76] mit Hilfe von massen- und energieseparierten Spaltfragmenten gemessenen Auflösungsvermögen eines DeltaE-E-Detektors mit einem senkrecht zur mittleren Spaltfragmenttrajektorie ausgerichteten elektrischen Feld überein. Eine Auflösung von Nukliden der schweren Spaltfragmentgruppe war in beiden Experimenten nicht möglich. Abschließend wurde auf der Basis der Geometrie des EUROSiB-Detektors [dAP+96] die Realisierbarkeit eines 2-Pi-Spaltfragmentdetektors studiert. Dabei zeigte sich, daß es möglich sein sollte, einen solchen Detektor zu konstruieren, obwohl dieser aufgrund des näherungsweise radialsymmetrischen elektrischen Feldes an den Grenzen des Ionisationskammerbereiches arbeiten wird. Mit Hilfe einer möglichst punktförmigen Quelle sowie einer Segmentierung der PIN-Dioden um eine bessere Ortsauflösung zu erreichen, sollte es möglich sein, ein Auflösungsvermögen zu erhalten, das der Größenordnung des Auflösungsvermögens des Prototypen entspricht. Mit dem vorgeschlagenen Detektor ließe sich eine absolute Effizienz von rund 74% in 2-Pi erreichen.In the present thesis the possibility of realizing a 2pi fission fragment detector has been investigated. The aim of this is to obtain an information about the atomic number of a fragment of spontaneous or particle-induced fission. The method is based on the principle that the corresponding partner of a fragment in the detector is stopped in a thick source or a thick target. Then the gamma-decay of this neutron-rich, often highly excited nucleus occurs at rest. Therefore the emitted gamma-radiation, which can be spectroscopied by gamma-detector arrays, is neither Doppler-shifted nor Doppler-broadened. Due to the high selectivity of the fission fragment detection it is possible to study the structure of rare, particularly neutron-rich nuclei. The method is based on the measurement of a fragment's energy loss with a gas ionization chamber, succeeded by a measurement of the fragment's residual energy using a silicon semiconductor detector. Measurements of fragments from the spontaneous fission of 252Cf using a detector telescope [1] in coincidence with a high-purity germanium detector were performed. The telescope consisted of an ionization chamber with an electrical field the direction of which was perpendicular orientated to the fission fragments' trajectory as well as an ion-implanted Si-detector. The measured resolving power was Z/Delta Z = 11 for Molybdenum (Z=42) and Z/Delta Z = 10 for Ruthenium (Z=44). PIN-diodes were tested for measuring the fission fragments' energies to replace the ion-implanted Si-detector by a less expensive type of detector. For these tests the criteria of Schmitt and Pleasonton [2] were applied. The PIN-diode of the series production reached approximately all criteria given by Schmitt and Pleasonton. It even surpassed the criterion for energy resolution clearly. The base to develop a detector with a large solid angle is an ionization chamber with an electrical field the direction of which is parallel to the average trajectory of the fission fragments. This kind of field geometry can be more easily expanded to cover a large solid angle. It requires the exclusive application of grid electrodes to allow the fission fragments to pass the electrodes with negligible energy loss. The potential distribution inside such an ionization chamber was simulated applying the finite element method. Based on these simulations a prototype detector that works with an electrical field the direction of which is parallel to the fission fragments' average trajectory has been constructed and built. An experiment with proton-induced fission of 238U was performed at the Van de Graaf accelerator of the Institute for Nuclear Physics of the University of Frankfurt / Main to test the new detector. By adding a high-purity germanium detector fission fragment-gamma coincidences were recorded. The response of the fission fragment detector was calculated numerically by using the energy loss data by Northcliffe and Schilling [3]. A resolving power of Z/Delta Z = 29 for Yttrium (Z=39) could be achieved with that. This resolving power agrees roughly with the value measured by Sistemich et al. [4] which was obtained with mass and energy separated fission fragments using a Delta E-E detector with an electrical field the direction of which was perpendicular to the fission fragments' average trajectory. It was not possible to resolve nuclei of the heavy fission fragments' group. Finally the feasibility of a 2pi fission fragment detector was studied on the geometrical basis of the EUROSiB-detector [5]. A detector of this kind should be feasible though it will operate at the limit of the ionization chamber region due to the electrical field which has approximately a radial symmetry. A segmentation of the PIN-diodes would increase the spatial resolution. With that and by using a point source, preferably, it should be possible to reach a resolving power of the order of magnitude of the prototype's resolving power. An absolute efficiency of 74% in 2pi should be achieved with the suggested detector

    Infrared measurements of atmospheric CH_3CN

    Get PDF
    For the first time CH_3CN has been measured in the Earth's atmosphere by means of infrared remote sensing. Vertical profiles of volume mixing ratio were retrieved from 12 solar occultation measurements by the balloon-borne JPL MkIV interferometer between 1993 and 2004. Profile retrieval is possible in an altitude range between 12 and 30 km with a precision of ∼20 ppt in the Arctic and ∼30 ppt at mid-latitudes. The retrieved CH_3CN profiles show mixing ratios of 100–150 ppt a few kilometers above the tropopause that decrease to values below 40 ppt at altitudes between 22 and 30 km. The CH_3CN mixing ratios show a reasonably compact correlation with the stratospheric tracers CH_3Cl and CH_4. The CH_3CN altitude profiles and tracer correlations are well reproduced by a 2-dimensional model, suggesting that CH_3CN is long-lived in the lower stratosphere and that previously-proposed ion-molecule reactions do not play a major role as loss processes of CH_3CN

    On the stratospheric chemistry of hydrogen cyanide

    Get PDF
    HCN profiles measured by solar occultation spectrometry during 10 balloon flights of the JPL MkIV instrument are presented. The HCN profiles reveal a compact correlation with stratospheric tracers. Calculations with a 2D-model using established rate coefficients for the reactions of HCN with OH and O(^1D) severely underestimate the measured HCN in the middle and upper stratosphere. The use of newly available rate coefficients for these reactions gives reasonable agreement of measured and modeled HCN. An HCN yield of ∼30% from the reaction of CH_3CN with OH is consistent with the measurements

    Asymmetric impacts on Mars’ polar vortices from an equinoctial Global Dust Storm

    Get PDF
    Mars possesses dynamical features called polar vortices: regions of cold, isolated air over the poles circumscribed by powerful westerly jets which can act as barriers to transport to dust, water, and chemical species. The 2018 Global Dust Storm was observed by multiple orbiters and offers a valuable opportunity to study the effects of such a storm on polar dynamics. To this end, we assimilate data from the Mars Climate Sounder and Atmospheric Chemistry Suite into a Mars Global Climate Model. We find that the storm had asymmetrical hemispherical impacts, with the northern vortex remaining relatively robust while the southern vortex was substantially diminished in its intensity. We propose that this asymmetry was due both to the storm’s latitudinal extent, as it extended further south than north, and to its equinoctial timing, occurring as the southern vortex was already decaying. We show that both polar vortices, in particular the northern, were reduced in ellipticity by the storm. There was a well‐correlated reduction in stationary topographic wave activity at high latitudes in both hemispheres. We demonstrate that the characteristic elliptical martian polar vortex shape is the pattern of the stationary waves, which was suppressed by the shifting of the polar jet away from regions of high mechanical forcing (north) or reduction of polar jet intensity by a reduced meridional temperature gradient (south). These asymmetric effects suggest increased transport into the southern (but not northern) polar region during Global Dust Storms at northern autumn equinox, and more longitudinally symmetric transport around both poles

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    N2_2O Temporal Variability from the Middle Troposphere to the Middle Stratosphere Based on Airborne and Balloon-Borne Observations during the Period 1987–2018

    Get PDF
    Nitrous oxide (N2_2O) is the fourth most important greenhouse gas in the atmosphere and is considered the most important current source gas emission for global stratospheric ozone depletion (O3_3). It has natural and anthropogenic sources, mainly as an unintended by-product of food production activities. This work examines the identification and quantification of trends in the N2_2O concentration from the middle troposphere to the middle stratosphere (MTMS) by in situ and remote sensing observations. The temporal variability of N2_2O is addressed using a comprehensive dataset of in situ and remote sensing N2_2O concentrations based on aircraft and balloon measurements in the MTMS from 1987 to 2018. We determine N2_2O trends in the MTMS, based on observations. This consistent dataset was also used to study the N2_2O seasonal cycle to investigate the relationship between abundances and its emission sources through zonal means. The results show a long-term increase in global N2_2O concentration in the MTMS with an average of 0.89 ± 0.07 ppb/yr in the troposphere and 0.96 ± 0.15 ppb/yr in the stratosphere, consistent with 0.80 ppb/yr derived from ground-based measurements and 0.799 ± 0.024 ppb/yr ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) satellite measurements
    corecore