14 research outputs found

    Temporal variation in pollination services to Cucurbita moschata is determined by bee gender and diversity

    Get PDF
    It has been proposed that species-rich insect communities and species turnover across landscapes enhance the pollination efficiency of crops through complementarity, where both the dominant and less abundant species contribute to reaching a yield threshold from pollination. Alternatively, fluctuations in the most abundant pollinator species, rather than changes in species richness, may drive temporal variation in pollination services. In this study, we used Cucurbita moschata as a model to investigate temporal variation in pollinator communities in a Mexican tropical dry forest region. We sampled floral visitors in the coastal region of Jalisco during the wet and dry seasons and determined the pollination efficiency of all floral visitors. Our results showed that there was temporal variation in the pollinator community and in the pollination efficiency of the main pollinators of Cucurbita moschata crops. In the wet season, native bees of the genus Peponapis were the most frequent and effective pollinators of C. moschata, whereas in the dry season, Peponapis bees were scarce and Apis mellifera became the most frequent floral visitor. Apis mellifera transfers smaller pollen loads than Peponapis, but it provides an effective pollination service in conjunction with other native bees during the dry season. There was also an interaction between flower gender and pollinator species, where A. mellifera had higher visitation rate to female C. moschata flowers, and Peponapis bees to staminate flowers. Mean visitation rate by Peponapis female bees was 17 times higher than visitation rate by male bees. This is the first report of a vis-à-vis relationship of pollinator gender with respect to plant gender in which plants of the genus Cucurbita that produce unisexual staminate and pistillate flowers are differentially visited by Peponapis male and female bees, where females are the main pollinators. Understanding the temporal variation in pollinator communities and the contribution of the different species of pollinators to the reproductive success of different crop species and varieties can be crucial to maintaining pollination services under the current global pollination crisis.Fil: Delgado-Carrillo, Oliverio. Laboratorio Nacional de Análisis y Síntesis Ecológica; México. Universidad Nacional Autónoma de México; MéxicoFil: Martén-Rodríguez, Silvana. Laboratorio Nacional de Análisis y Síntesis Ecológica; MéxicoFil: Ashworth, Lorena. Laboratorio Nacional de Análisis y Síntesis Ecológica; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Aguilar, Ramiro. Laboratorio Nacional de Análisis y Síntesis Ecológica; México. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Lopezaraiza-Mikel, Martha. Universidad Autonoma de Guerrero; MéxicoFil: Quesada, Mauricio. Laboratorio Nacional de Análisis y Síntesis Ecológica; Méxic

    Microbiological Implications of Periurban Agriculture and Water Reuse in Mexico City

    Get PDF
    BACKGROUND: Recycled treated or untreated wastewater represents an important health challenge in developing countries due to potential water related microbiological exposure. Our aim was to assess water quality and health implications in a Mexico City periurban agricultural area. METHODOLOGY/PRINCIPAL FINDINGS: A longitudinal study in the Xochimilco wetland area was conducted, and 42 sites were randomly selected from 211, including irrigation water canals and effluents of treatment plants. Sample collection took place during rainy and dry seasons (2000-2001). Microbiological parameters (total coliforms, fecal coliforms, streptococci/enterococci, and bacteria other than Vibrio grown on TCBS), Helicobacter pylori, and physicochemical parameters including trihalomethanes (THM) were determined. Fecal coliforms and fecal streptococci are appropriate indicators of human or animal fecal contamination. Fecal coliform counts surpass Mexican and World Health Organization irrigation water guidelines. Identified microorganisms associated with various pathologies in humans and domestic animals comprise Escherichia coli, Klebsiella spp., Salmonella spp., Enterobacter spp., Enterococcus spp., and Pseudomonas spp; H. pylori was also present in the water. An environmental characteristic of the canal system showed high Total Organic Carbon content and relatively low dissolved oxygen concentration; residual chlorine as a disinfection control is not efficient, but THMs do not represent a problem. During the rainy season, temperature and conductivity were higher; in contrast, pH, dissolved oxygen, ammonia, and residual chlorine were lower. This is related with the continuous load of feces from human and animal sources, and to the aquatic systems, which vary seasonally and exhibit evidence of lower water quality in effluents from treatment plants. CONCLUSIONS/SIGNIFICANCE: There is a need for improvement of wastewater treatment systems, as well as more efficient monitoring, regulation, and enforcement procedures for wastewater disposal into bodies of water
    corecore