5 research outputs found

    A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development

    Get PDF
    Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host’s nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host’s nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.Fil: Vargas, Walter Alberto. Universidad de Salamanca; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sanz Martín, José M.. Universidad de Salamanca; EspañaFil: Rech, Gabriel E.. Universidad de Salamanca; EspañaFil: Armijos Jaramillo, Vinicio D.. Universidad de Salamanca; EspañaFil: Rivera Rodriguez, Lina Patricia. Universidad de Salamanca; EspañaFil: Echeverria, María de Las Mercedes. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; ArgentinaFil: Díaz Mínguez, José M.. Universidad de Salamanca; EspañaFil: Thon, Michael R.. Universidad de Salamanca; EspañaFil: Sukno, Serenella A.. Universidad de Salamanca; Españ

    Degradation of PET Bottles by an Engineered <i>Ideonella sakaiensis</i> PETase

    No full text
    Extensive plastic production has become a serious environmental and health problem due to the lack of efficient treatment of plastic waste. Polyethylene terephthalate (PET) is one of the most used polymers and is accumulating in landfills or elsewhere in nature at alarming rates. In recent years, enzymatic degradation of PET by Ideonella sakaiensis PETase (IsPETase), a cutinase-like enzyme, has emerged as a promising strategy to completely depolymerize this polymer into its building blocks. Here, inspired by the architecture of cutinases and lipases homologous to IsPETase and using 3D structure information of the enzyme, we rationally designed three mutations in IsPETase active site for enhancing its PET-degrading activity. In particular, the S238Y mutant, located nearby the catalytic triad, showed a degradation activity increased by 3.3-fold in comparison to the wild-type enzyme. Importantly, this structural modification favoured the function of the enzyme in breaking down highly crystallized (~31%) PET, which is found in commercial soft drink bottles. In addition, microscopical analysis of enzyme-treated PET samples showed that IsPETase acts better when the smooth surface of highly crystalline PET is altered by mechanical stress. These results represent important progress in the accomplishment of a sustainable and complete degradation of PET pollution
    corecore