10 research outputs found

    A Program for At-Risk High School Students Informed by Evolutionary Science

    Get PDF
    Improving the academic performance of at-risk high school students has proven difficult, often calling for an extended day, extended school year, and other expensive measures. Here we report the results of a program for at-risk 9th and 10th graders in Binghamton, New York, called the Regents Academy that takes place during the normal school day and year. The design of the program is informed by the evolutionary dynamics of cooperation and learning, in general and for our species as a unique product of biocultural evolution. Not only did the Regents Academy students outperform their comparison group in a randomized control design, but they performed on a par with the average high school student in Binghamton on state-mandated exams. All students can benefit from the social environment provided for at-risk students at the Regents Academy, which is within the reach of most public school districts

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    Peer review versus editorial review and their role in innovative science

    No full text

    Fundamental Physics at the Intensity Frontier

    No full text
    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    Fundamental Physics at the Intensity Frontier

    No full text
    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    PHENIX detector overview

    No full text
    The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore