4 research outputs found

    Stability Studies for Photovoltaic Integration using Power Hardware-in-the-Loop Experiments

    Full text link
    The electrical power network is gradually migrating from a centralized generation approach to a decentralized generation with high shares of renewable energy sources (RES). However, power systems with low shares of synchronous generation and consequently low total system inertia, are vulnerable to power imbalances. Such systems can experience frequency stability problems, such as high frequency excursions and higher rates of change of frequency even under small disturbances. This phenomenon is intensified when the grid under investigation has low or no interconnections (islanded) and thus the challenge for stable operation becomes more significant for the operators. This work focuses on how the frequency stability is affected when a photovoltaic (PV) inverter is integrated into a real non-interconnected distribution grid in Cyprus. In order to capture the realistic interactions of this integration, stability experiments in a hardware-in-the-loop (HIL) environment are performed with the aim to provide insightful results for the grid operator.Comment: The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020

    Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    No full text
    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process
    corecore