5 research outputs found

    Gradual Increase of FcγRIIIa/CD16a Expression and Shift toward IFN-γ Secretion during Differentiation of CD56dim Natural Killer Cells

    No full text
    Natural killer (NK) cell effector functions include cytotoxicity and secretion of cytokines such as interferon-γ (IFN-γ). The immature CD56bright subset of human NK cells lacks expression of FcγRIIIa/CD16a, one of the low-affinity immunoglobulin G receptors, or exhibits low-density expression (CD56brightCD16−/dim) and produces IFN-γ in response to cytokine stimulation, whereas the mature CD56dimCD16+ subset is the most cytotoxic one. A further differentiation/maturation of the latter subset according to the gradual loss of NKG2A and/or gain of KIR2DL (CD158a and CD158b) has been demonstrated and the ability to produce IFN-γ in response to activating receptor (AR) co-engagement is gradually acquired during terminal differentiation. In the course of flow cytometry analysis of CD56dim NK cells, we noted a substantial intraindividual heterogeneity of expression of FcγRIIIa. FcγRIIIa is unique among ARs: it does not require the co-engagement of other ARs to induce substantial cytotoxicity or cytokine synthesis in CD56dim cells. We, therefore, investigated whether individual differentiation/maturation of polyclonal CD56dim NK cells defined by expression of NKG2A/KIR2DL is related to FcγRIIIa expression and to the heterogeneity of NK cell responses upon FcγRIIIa engagement. When we analyzed unstimulated CD56dim cells by increasing level of FcγRIIIa expression, we found that the proportion of the more differentiated CD158a,h+ and/or CD158b,j+ cells and that of the less differentiated NKG2A+ cells gradually increased and decreased, respectively. FcγRIIIa engagement by using plate-bound murine anti-CD16 monoclonal antibody (mAb) or rituximab or trastuzumab (two therapeutic mAbs), resulted in donor-dependent partial segregation of IFN-γ-producing and/or degranulating CD56dim cells. Importantly, the proportion of CD158a,h/b,j+ cells and that of NKG2A+ cells was increased and decreased, respectively, IFN-γ-producing cells, whereas these proportions were poorly modified in degranulating cells. Similar results were observed after engagement of ARs by a combination of mAbs targeting NKG2D, NKp30, NKp46, and 2B4. Thus, the gradual increase of FcγRIIIa expression is an important feature of the differentiation/maturation of CD56dim cells and this differentiation/maturation is associated with a shift in functionality toward IFN-γ secretion observed upon both FcγRIIIa-dependent and FcγRIIIa-independent stimulation. The functional heterogeneity related to the differentiation/maturation of CD56dim NK cells could be involved in the variability of the clinical responses observed in patients treated with therapeutic mAbs

    Primary immune deficiencies: practical questions.

    No full text
    International audienceFcγRIIIA/CD16A, the low-affinity receptor for the IgG Fc portion expressed on human CD56(dim) NK cells and involved in Ab-dependent cell cytotoxicity, is shed upon NK cell activation. We found that recombinant a disintegrin and metalloprotease (ADAM) 17 cleaved the ectodomain of FcγRIIIA/CD16A and a peptide for which the sequence encompasses aa 191-201 of the FcγRIIIA/CD16A stalk region but not ADAM10. MALDI-TOF analysis revealed that the peptide was cleaved between Ala(195) and Val(196) (i.e., 1 aa upstream of the expected position). This location of the cleavage site was confirmed by the finding that ADAM17 failed to cleave a peptide in which Ala and Val were reversed. ADAM17 was found to be expressed on NK cells, and stimulation with PMA or N-ethyl-maleimide resulted in the shedding of FcγRIIIA/CD16A and CD62L, a specific substrate of ADAM17. Selective inhibition of ADAM17 prevented the shedding of both molecules. Moreover, the shedding of FcγRIIIA/CD16A was strongly correlated with degranulation when a wide range of CD56(dim) NK cell activating receptors were stimulated, whereas both ADAM17-dependent shedding and internalization were involved in FcγRIIIA/CD16A downmodulation when the latter was engaged. Finally, the shedding of FcγRIIIA/CD16A was restricted to activated cells, suggesting that ADAM17 acts mainly, if not exclusively, in cis. Taken together, our results demonstrated for the first time, to our knowledge, at the molecular level that ADAM17 cleaves the stalk region of FcγRIIIA/CD16A and identified its cleavage site. The shedding of FcγRIIIA/CD16A was at least partially ADAM17 dependent, and it may be considered as a marker of FcγRIIIA/CD16A-independent NK cell activation highly correlated with degranulation

    ADAM17-Mediated Shedding of FcγRIIIA on Human NK Cells: Identification of the Cleavage Site and Relationship with Activation

    No full text
    International audienceFcγRIIIA/CD16A, the low-affinity receptor for the IgG Fc portion expressed on human CD56(dim) NK cells and involved in Ab-dependent cell cytotoxicity, is shed upon NK cell activation. We found that recombinant a disintegrin and metalloprotease (ADAM) 17 cleaved the ectodomain of FcγRIIIA/CD16A and a peptide for which the sequence encompasses aa 191-201 of the FcγRIIIA/CD16A stalk region but not ADAM10. MALDI-TOF analysis revealed that the peptide was cleaved between Ala(195) and Val(196) (i.e., 1 aa upstream of the expected position). This location of the cleavage site was confirmed by the finding that ADAM17 failed to cleave a peptide in which Ala and Val were reversed. ADAM17 was found to be expressed on NK cells, and stimulation with PMA or N-ethyl-maleimide resulted in the shedding of FcγRIIIA/CD16A and CD62L, a specific substrate of ADAM17. Selective inhibition of ADAM17 prevented the shedding of both molecules. Moreover, the shedding of FcγRIIIA/CD16A was strongly correlated with degranulation when a wide range of CD56(dim) NK cell activating receptors were stimulated, whereas both ADAM17-dependent shedding and internalization were involved in FcγRIIIA/CD16A downmodulation when the latter was engaged. Finally, the shedding of FcγRIIIA/CD16A was restricted to activated cells, suggesting that ADAM17 acts mainly, if not exclusively, in cis. Taken together, our results demonstrated for the first time, to our knowledge, at the molecular level that ADAM17 cleaves the stalk region of FcγRIIIA/CD16A and identified its cleavage site. The shedding of FcγRIIIA/CD16A was at least partially ADAM17 dependent, and it may be considered as a marker of FcγRIIIA/CD16A-independent NK cell activation highly correlated with degranulation
    corecore