315 research outputs found

    Ultra-high-Q microcavity operation in H2O and D2O

    Get PDF
    Optical microcavities provide a possible method for boosting the detection sensitivity of biomolecules. Silica-based microcavities are important because they are readily functionalized, which enables unlabeled detection. While silica resonators have been characterized in air, nearly all molecular detections are performed in solution. Therefore, it is important to determine their performance limits in an aqueous environment. In this letter, planar microtoroid resonators are used to measure the relationship between quality factor and toroid diameter at wavelengths ranging from visible to near-IR in both H2O and D2O, and results are then compared to predictions of a numerical model. Quality factors (Q) in excess of 10^8, a factor of 100 higher than previous measurements in an aqueous environment, are observed in both H2O and D2O

    Photonic clocks, Raman lasers, and Biosensors on Silicon

    Get PDF
    Micro-resonators on silicon having Q factors as high as 500 million are described, and used to demonstrate radio-frequency mechanical oscillators, micro-Raman and parametric sources with sub-100 microwatt thresholds, visible sources, as well as high-sensitivity, biological detectors

    Soft lithographic fabrication of microresonators

    Get PDF
    Using ultra-high-Q toroid microcavity masters, soft lithography is applied to fabricate polymer microcavity arrays with Q factors in excess of 10^6. This technique produces resonators with material-limited quality factors

    Fiber-coupled erbium microlasers on a chip

    Get PDF
    An erbium-doped, toroid-shaped microlaser fabricated on a silicon chip is described and characterized. Erbium-doped sol-gel films are applied to the surface of a silica toroidal microresonator to create the microcavity lasers. Highly confined whispering gallery modes make possible single-mode and ultralow threshold microlasers

    Ultra-high-Q toroid microcavities on a chip

    Get PDF
    We demonstrate microfabrication of ultra-high-Q microcavities on a chip, exhibiting a novel toroid-shaped geometry. The cavities possess Q-factors in excess of 100 million which constitutes an improvement close to 4 orders-of-magnitude in Q compared to previous work [B. Gayral, et al., 1999]

    Fabrication and coupling to planar high-Q silica disk microcavities

    Get PDF
    Using standard lithographic techniques, we demonstrate fabrication of silica disk microcavities, which exhibit whispering-gallery-type modes having quality factors (Q) in excess of 1 million. Efficient coupling (high extinction at critical coupling and low, nonresonant insertion loss) to and from the disk structure is achieved by the use of tapered optical fibers. The observed high Q is attributed to the wedged-shaped edge of the disk microcavity, which is believed to isolate modes from the disk perimeter and thereby reduce scattering loss. The mode spectrum is measured and the influence of planar confinement on the mode structure is investigated. We analyze the use of these resonators for very low loss devices, such as add/drop filters

    Ultralow-threshold microcavity Raman laser on a microelectronic chip

    Get PDF
    Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000 µm^3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 µW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip

    Spectrometer Scan Mechanism for Encountering Jovian Orbit Trojan Asteroids

    Get PDF
    This paper describes the design, testing, and lessons learned during the development of the Lucy Ralph (L'Ralph) Scan Mirror System (SMS), composed of the Scan Mirror Mechanism (SMM), Differential Position Sensor System (DPSS) and Mechanism Control Electronics (MCE). The L'Ralph SMS evolved from the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM), so design comparisons will be made. Lucy is scheduled to launch in October 2021, embarking upon a 12-year mission to make close range encounters in 2025 and 2033 with seven Trojan asteroids and one main belt asteroid that are within the Jovian orbit. The L'Ralph instrument is based upon the New Horizons Ralph instrument, which is a panchromatic and color visible imager and infrared spectroscopic mapper that slewed the spacecraft for imaging. The L'Ralph SMM is to provide scanning for imaging to eliminate the need to slew the spacecraft. One purpose of this paper is to gain understanding of the reasoning behind some of the design features as compared with the ATLAS BSM. We will identify similarities and differences between the ATLAS BSM and the L'Ralph SMM that resulted from the latter's unique requirements. Another purpose of this paper is to focus upon "Lessons Learned" that came about during the development of the L'Ralph SMM and its MCE, both mechanism engineering issues and solutions as well as Ground Support Equipment (GSE) issues and solutions that came about during the validation of requirements process. At the time of this writing, the L'Ralph SMM has been flight qualified and delivered to the project
    • …
    corecore