50 research outputs found

    Unisite ATP hydrolysis by soluble Rhodospirillum rubrum F1–ATPase is accelerated by Ca2+

    Get PDF
    AbstractAt saturating concentrations of ATP, soluble F1 from the Rhodospirillum rubrum (RF1) exhibits a higher rate of hydrolysis with Ca2+ than with Mg2+. The mechanisms involved in the expression of a higher catalytic activity with Ca2+ were explored by measuring the ATPase activity of RF1 at substiochiometric concentrations of ATP (unisite conditions). At a ratio of 0.25 [γ-32P]ATP per RF1, the enzyme exhibited a 50 times higher hydrolytic rate with Ca2+ than with Mg2+. The rate of [γ-32P]ATP binding to RF1 was in the same range with the two divalent metal ions. Centrifugation–filtration of RF1 exposed to substoichiometric [γ-32P]ATP concentrations and Mg2+ through Sephadex columns yielded an enzyme that contained [γ-32P]ATP and [32P]phosphate in a stoichiometry that was close to one. In the presence of Ca2+, the eluted enzyme did not contain [γ-32P]ATP nor [32P]phosphate. This indicated that the rate of product release was faster with Ca2+ than with Mg2+. It was also observed that the ratio of multisite to unisite hydrolysis rates was of similar magnitude with both divalent cations. This suggests that they do not affect differently the cooperative mechanisms that may exist between catalytic sites. In consequence, the higher ATPase activity of RF1 in presence of Ca2+ strongly suggests that the retention time of products is decreased in the presence of this cation

    Perturbation of the dimer interface of triosephosphate isomerase and its effect on trypanosoma cruzi

    Get PDF
    Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM). The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM), and tested if they kill the parasite

    Substrate-induced dimerization of engineered monomeric variants of triosephosphate isomerase from Trichomonas vaginalis

    Get PDF
    "The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 angstrom 2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

    A Ribosomal Misincorporation of Lys for Arg in Human Triosephosphate Isomerase Expressed in Escherichia coli Gives Rise to Two Protein Populations

    Get PDF
    We previously observed that human homodimeric triosephosphate isomerase (HsTIM) expressed in Escherichia coli and purified to apparent homogeneity exhibits two significantly different thermal transitions. A detailed exploration of the phenomenon showed that the preparations contain two proteins; one has the expected theoretical mass, while the mass of the other is 28 Da lower. The two proteins were separated by size exclusion chromatography in 3 M urea. Both proteins correspond to HsTIM as shown by Tandem Mass Spectrometry (LC/ESI-MS/MS). The two proteins were present in nearly equimolar amounts under certain growth conditions. They were catalytically active, but differed in molecular mass, thermostability, susceptibility to urea and proteinase K. An analysis of the nucleotides in the human TIM gene revealed the presence of six codons that are not commonly used in E. coli. We examined if they were related to the formation of the two proteins. We found that expression of the enzyme in a strain that contains extra copies of genes that encode for tRNAs that frequently limit translation of heterologous proteins (Arg, Ile, Leu), as well as silent mutations of two consecutive rare Arg codons (positions 98 and 99), led to the exclusive production of the more stable protein. Further analysis by LC/ESI-MS/MS showed that the 28 Da mass difference is due to the substitution of a Lys for an Arg residue at position 99. Overall, our work shows that two proteins with different biochemical and biophysical properties that coexist in the same cell environment are translated from the same nucleotide sequence frame

    The Stability and Formation of Native Proteins from Unfolded Monomers Is Increased through Interactions with Unrelated Proteins

    Get PDF
    The intracellular concentration of protein may be as high as 400 mg per ml; thus it seems inevitable that within the cell, numerous protein-protein contacts are constantly occurring. A basic biochemical principle states that the equilibrium of an association reaction can be shifted by ligand binding. This indicates that if within the cell many protein-protein interactions are indeed taking place, some fundamental characteristics of proteins would necessarily differ from those observed in traditional biochemical systems. Accordingly, we measured the effect of eight different proteins on the formation of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) from guanidinium chloride unfolded monomers. The eight proteins at concentrations of micrograms per ml induced an important increase on active dimer formation. Studies on the mechanism of this phenomenon showed that the proteins stabilize the dimeric structure of TbTIM, and that this is the driving force that promotes the formation of active dimers. Similar data were obtained with TIM from three other species. The heat changes that occur when TbTIM is mixed with lysozyme were determined by isothermal titration calorimetry; the results provided direct evidence of the weak interaction between apparently unrelated proteins. The data, therefore, are strongly suggestive that the numerous protein-protein interactions that occur in the intracellular space are an additional control factor in the formation and stability of proteins
    corecore