2,786 research outputs found
2D ground motion at a soft viscoelastic layer/hard substratum site in response to SH cylindrical seismic waves radiated by deep and shallow line sources
We show, essentially by theoretical means, that for a site with the chosen
simple geometry and mechanical properties (horizontal, homogeneous, soft
viscoelastic layer of infinite lateral extent overlying, and in welded contact
with, a homogeneous, hard elastic substratum of half-infinite radial extent,
shear-horizontal motion): 1) coupling to Love modes is all the weaker the
farther the seismic source (modeled as a line, assumed to lie in the
substratum) is from the lower boundary of the soft layer, 2) for a line source
close to the lower boundary of the soft layer, the ground response is
characterized by possible beating phenomena, and is of significantly-longer
duration than for excitation by cylindrical waves radiated by deep sources.
Numerical applications of the theory show, for instance, that a line source,
located 40m below the lower boundary of a 60m thick soft layer in a
hypothetical Mexico City-like site, radiating a SH pulse of 4s duration,
produces substantial ground motion during 200s, with marked beating, at an
epicentral distance of 3km. This response is in some respects similar to that
observed in real cities located at soft-soil sites so that the model employed
herein may help to establish the causes and pinpoint the major contributing
factors of the devastating effects of earthquakes in such cities.Comment: Submitted to Geophys.J.Int
First experimental demonstration of temporal hypertelescope operation with a laboratory prototype
In this paper, we report the first experimental demonstration of a Temporal
HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested
in a manual cophasing configuration on a 1D object. The Point Spread Function
(PSF) is measured and exhibits a dynamics in the range of 300. A quantitative
analysis of the potential biases demonstrates that this limitation is related
to the residual phase fluctuation on each interferometric arm. Secondly, an
unbalanced binary star is imaged demonstrating the imaging capability of THT.
In addition, 2D PSF is recorded even if the telescope array is not optimized
for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure
The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000A (III): Cosmological Implications
(Abridged) We have used HST WFPC2 and ground-based spectroscopy to measure
the integrated extragalactic background light (EBL) at optical wavelengths. We
have also computed the integrated light from individual galaxy counts in the
images used to measure the EBL and in the Hubble Deep Field. We find that the
flux in galaxies as measured by standard galaxy photometry methods has
generally been underestimated by about 50%. Further, we find that the total
flux in individually detected galaxies is a factor of 2 to 3 less than the EBL
at 3000--8000A. We show that a significant fraction of the EBL may come from
normal galaxies at z<4, which are simply undetectable as a result of
K-corrections and cosmological surface brightness dimming. This is consistent
with recent redshift surveys at z<4. In the context of some simple models, we
discuss the constraints placed by the EBL on the evolution of the luminosity
density at z>1. Based on our optical EBL and published UV and IR EBL
measurements, we estimate that the total EBL from 0.1--1000 microns is 100+/-20
nW/m^2/sr. If the total EBL were produced entirely by stellar nucleosynthesis,
then we estimate that the total baryonic mass processed through stars is
Omega_* = 0.0062 (+/- 0.0022) h^{-2}, which corresponds to 0.33+/-0.12 Omega_B
for currently favored values of the baryon density. This estimate is smaller by
roughly 7% if 7 h_{0.7} nW/m^2/sr of the total EBL comes from accretion onto
central black holes. This estimate of Omega_* suggests that the universe has
been enriched to a total metal mass of 0.21(+/-0.13) Z_sun Omega_B. Our
estimate is consistent with other measurements of the cumulative metal mass
fraction of stars, stellar remnants, and the intracluster medium of galaxy
clusters in the local universe.Comment: Accepted for publication in ApJ, 20 pages using emulateapj.sty,
version with higher resolution figures available at
http://www.astro.lsa.umich.edu/~rab/publications.html or at
http://nedwww.ipac.caltech.edu/level5/Sept01/Bernstein3/frames.htm
Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy
© 2014 Author(s). Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value-furthermore, data on taxon-specific responses are almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate/silicic acid and carbohydrates. In contrast to some previous studies, silicate/silicic acid levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the need for further research into taxon-specific phenotypic responses of phytoplankton to environmental change
Fluctuations of Fluctuation-Induced "Casimir" Forces
The force experienced by objects embedded in a correlated medium undergoing
thermal fluctuations--the so-called fluctuation--induced force--is actually
itself a fluctuating quantity. We compute the corresponding probability
distribution and show that it is a Gaussian centered on the well-known Casimir
force, with a non-universal standard deviation that can be typically as large
as the mean force itself. The relevance of these results to the experimental
measurement of fluctuation-induced forces is discussed, as well as the
influence of the finite temporal resolution of the measuring apparatus.Comment: 4 pages, 2 figure
Cosmic Histories of Stars, Gas, Heavy Elements, and Dust
We present a set of coupled equations that relate the stellar, gaseous,
chemical, and radiation constituents of the universe averaged over the whole
galaxy population. Using as input the available data from quasar
absorption-line surveys, optical imaging and redshift surveys, and the COBE
DIRBE and FIRAS extragalactic infrared background measurements, we obtain
solutions for the cosmic histories of stars, interstellar gas, heavy elements,
dust, and radiation from stars and dust in galaxies. Our solutions reproduce
remarkably well a wide variety of observations that were not used as input,
including the integrated background light from galaxy counts, the optical and
near-infrared emissivities from galaxy surveys, the local infrared emissivities
from the IRAS survey, the mean abundance of heavy elements from surveys of
damped Lyman-alpha systems, and the global star formation rates from H
surveys and submillimeter observations. The solutions presented here suggest
that the process of galaxy formation appears to have undergone an early period
of substantial inflow to assemble interstellar gas at , a subsequent
period of intense star formation and chemical enrichment at , and a recent period of rapid decline in the gas content, star
formation rate, optical stellar emissivity, and infrared dust emission at
. [abridged version]Comment: 29 pages, ApJ in press, 10 Sept 9
Recommended from our members
Detection of [O I] 63 <i>μ</i>m in absorption toward Sgr B2
A high signal-to-noise 52-90 μm spectrum is presented for the central part of the Sagittarius B2 complex. The data were obtained with the Long Wavelength Spectrometer on board the Infrared Space Observatory (ISO). The [O I] 63 μm line is detected in absorption even at the grating spectral resolution of 0.29 μm. A lower limit for the column density of atomic oxygen of the order of 1019 cm-2 is derived. This implies that more than 40% of the interstellar oxygen must be in atomic form along the line of sight toward the Sgr B2 molecular cloud
A Global Diatom Database- Abundance, Biovolume and Biomass in the World Ocean
Phytoplankton identification and abundance data are now commonly feeding plankton distribution databases worldwide. This study is a first attempt to compile the largest possible body of data available from different databases as well as from individual published or unpublished datasets regarding diatom distribution in the world ocean. The data obtained originate from time series studies as well as spatial studies. This effort is supported by the Marine Ecosystem Model Inter-Comparison Project (MAREMIP), which aims at building consistent datasets for the main plankton functional types (PFTs) in order to help validate biogeochemical ocean models by using carbon (C) biomass derived from abundance data. In this study we collected over 293 000 individual geo-referenced data points with diatom abundances from bottle and net sampling. Sampling site distribution was not homogeneous, with 58% of data in the Atlantic, 20% in the Arctic, 12% in the Pacific, 8% in the Indian and 1% in the Southern Ocean. A total of 136 different genera and 607 different species were identified after spell checking and name correction. Only a small fraction of these data were also documented for biovolumes and an even smaller fraction was converted to C biomass. As it is virtually impossible to reconstruct everyone\u27s method for biovolume calculation, which is usually not indicated in the datasets, we decided to undertake the effort to document, for every distinct species, the minimum and maximum cell dimensions, and to convert all the available abundance data into biovolumes and C biomass using a single standardized method. Statistical correction of the database was also adopted to exclude potential outliers and suspicious data points. The final database contains 90 648 data points with converted C biomass. Diatom C biomass calculated from cell sizes spans over eight orders of magnitude. The mean diatom biomass for individual locations, dates and depths is 141.19 μg Cl-1, while the median value is 11.16 μg Cl-1. Regarding biomass distribution, 19% of data are in the range 0-1 μg Cl-1, 29% in the range 1-10 μg Cl-1, 31% in the range 10-100 μg Cl-1, 18% in the range 100-1000 μg Cl-1, and only 3% \u3e 1000 μg Cl-1. Interestingly, less than 50 species contributed to \u3e90% of global biomass, among which centric species were dominant. Thus, placing significant efforts on cell size measurements, process studies and C quota calculations of these species should considerably improve biomass estimates in the upcoming years. A first-order estimate of the diatom biomass for the global ocean ranges from 444 to 582 Tg C, which converts to 3 to 4 Tmol Si and to an average Si biomass turnover rate of 0.15 to 0.19 d-1. Link to the dataset: doi:10.1594/PANGAEA.777384
Casimir Torques between Anisotropic Boundaries in Nematic Liquid Crystals
Fluctuation-induced interactions between anisotropic objects immersed in a
nematic liquid crystal are shown to depend on the relative orientation of these
objects. The resulting long-range ``Casimir'' torques are explicitely
calculated for a simple geometry where elastic effects are absent. Our study
generalizes previous discussions restricted to the case of isotropic walls, and
leads to new proposals for experimental tests of Casimir forces and torques in
nematics.Comment: 4 pages, 1 figur
- …