73 research outputs found

    Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques

    Get PDF
    Slope stability analysis allows engineers to pinpoint risky areas, study trigger mechanisms for slope failures, and design slopes with optimal safety and reliability. Before the widespread usage of computers, slope stability analysis was conducted through semi analytical methods, or stability charts. Presently, engineers have developed many computational tools to perform slope stability analysis more efficiently. The challenge associated with furthering slope stability methods is to create a reliable design solution to perform reliable estimations involving a number of geometric and mechanical variables. The objective of this study was to investigate the application of tree-based models, including decision tree (DT), random forest (RF), and AdaBoost, in slope stability classification under seismic loading conditions. The input variables used in the modelling were slope height, slope inclination, cohesion, friction angle, and peak ground acceleration to classify safe slopes and unsafe slopes. The training data for the developed computational intelligence models resulted from a series of slope stability analyses performed using a standard geotechnical engineering software commonly used in geotechnical engineering practice. Upon construction of the tree-based models, the model assessment was performed through the use and calculation of accuracy, F1-score, recall, and precision indices. All tree-based models could efficiently classify the slope stability status, with the AdaBoost model providing the highest performance for the classification of slope stability for both model development and model assessment parts. The proposed AdaBoost model can be used as a screening tool during the stage of feasibility studies of related infrastructure projects, to classify slopes according to their expected status of stability under seismic loading conditions

    Environmental Issues of Blasting Applications of Artificial Intelligence Techniques

    Full text link
    This book gives a rigorous and up-to-date study of the various AI and machine learning algorithms for resolving environmental challenges associated with blasting

    A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles

    Get PDF
    The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP) tree-based, and simulated annealing–GP or SA–GP for prediction of the ultimate-bearing capacity (Qult) of the pile. The collected database consists of 50 driven piles properties with pile length, pile cross-sectional area, hammer weight, pile set and drop height as model inputs and Qult as model output. Many GP and SA–GP models were constructed for estimating pile bearing capacity and the best models were selected using some performance indices. For comparison purposes, the ANFIS model was also applied to predict Qult of the pile. It was observed that the developed models are able to provide higher prediction performance in the design of Qult of the pile. Concerning the coefficient of correlation, and mean square error, the SA–GP model had the best values for both training and testing data sets, followed by the GP and ANFIS models, respectively. It implies that the neural-based predictive machine learning techniques like ANFIS are not as powerful as evolutionary predictive machine learning techniques like GP and SA–GP in estimating the ultimate-bearing capacity of the pile. Besides, GP and SA–GP can propose a formula for Qult prediction which is a privilege of these models over the ANFIS predictive model. The sensitivity analysis also showed that the Qult of pile looks to be more affected by pile cross-sectional area and pile set

    TBM performance prediction developing a hybrid ANFIS-PNN predictive model optimized by imperialism competitive algorithm

    Full text link
    A reliable and accurate prediction of the tunnel boring machine (TBM) performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects. This research aims to develop a novel hybrid intelligent system, i.e., adaptive neuro-fuzzy inference system (ANFIS)-polynomial neural network (PNN) optimized by the imperialism competitive algorithm (ICA), ANFIS-PNN-ICA for prediction of TBM performance. In fact, the role of ICA in this hybrid system is to optimize the membership functions obtained by ANFIS-PNN model for receiving a higher level of performance prediction. Based on previously published works, seven parameters including the rock quality designation, the rock mass rating, Brazilian tensile strength, rock mass weathering, the uniaxial compressive strength, revolution per minute and thrust force were set as inputs to predict TBM performance. Together with the ANFIS-PNN-ICA model, two single model of PNN and ANFIS were also constructed for comparison purposes. These models were designed conducting several parametric studies on their most important parameters and then, their performance capacities were assessed through the use of several performance indices, e.g., correlation coefficient (R). R values of (0.9642, 0.9654 and 1), (0.9482, 0.9671 and 0.9778) and (0.9652, 0.9642, 0.9898) were obtained for training, testing and all datasets of PNN, ANFIS and ANFIS-PNN-ICA models, respectively. These results revealed that the greater prediction capacity can be provided by the ANFIS-PNN-ICA predictive model compared to ANFIS and PNN models and this hybrid intelligent model can be introduced as an accurate, powerful and applicable technique in the field of TBM performance prediction

    Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples

    No full text
    Shear strength parameters such as cohesion are the most significant rock parameters which can be utilized for initial design of some geotechnical engineering applications. In this study, evaluation and prediction of rock material cohesion is presented using different approaches i.e., simple and multiple regression, artificial neural network (ANN) and genetic algorithm (GA)-ANN. For this purpose, a database including three model inputs i.e., p-wave velocity, uniaxial compressive strength and Brazilian tensile strength and one output which is cohesion of limestone samples was prepared. A meaningful relationship was found for all of the model inputs with suitable performance capacity for prediction of rock cohesion. Additionally, a high level of accuracy (coefficient of determination, R (2) of 0.925) was observed developing multiple regression equation. To obtain higher performance capacity, a series of ANN and GA-ANN models were built. As a result, hybrid GA-ANN network provides higher performance for prediction of rock cohesion compared to ANN technique. GA-ANN model results (R (2) = 0.976 and 0.967 for train and test) were better compared to ANN model results (R (2) = 0.949 and 0.948 for train and test). Therefore, this technique is introduced as a new one in estimating cohesion of limestone samples

    Perpillou (Jean-Louis). Recherches lexicales en grec ancien. Etymologie, analogie, représentations.

    No full text
    Duhoux Yves. Perpillou (Jean-Louis). Recherches lexicales en grec ancien. Etymologie, analogie, représentations. . In: Revue belge de philologie et d'histoire, tome 77, fasc. 1, 1999. Antiquite - Oudheid. p. 214
    corecore