57 research outputs found
Herausforderung Praxis
Auch in Entwicklungsländern bieten umweltorientierte KostenmanagementsyÂsteme dreifache Nutzenpotenziale. Zu ihrer Ausschöpfung bedarf es geeignet angepasster Instrumente sowie Flexibilität in der Weiterentwicklung. Dies wird anhand von Praxisbeispielen auf Basis der Reststoffkostenrechnung illustriert
The c-Myc Oncoprotein Interacts with Bcr
AbstractBcr is a multifunctional protein that is the fusion partner for Abl (p210 Bcr-Abl) in Philadelphia chromosome positive leukemias. We have identified c-Myc as a binding partner for Bcr in both yeast and mammalian cells. We are also able to observe interactions between natively expressed c-Myc and Bcr in leukemic cell lines. Although Bcr and Max have overlapping binding sites on c-Myc, Bcr cannot interact with Max, or with the c-Myc•Max heterodimer. Bcr expression blocks activation of c-Myc-responsive genes, as well as the transformed phenotype induced by coexpression of c-Myc and H-Ras, and this finding suggests that one function of Bcr is to limit the activity of c-Myc. However, Bcr does not block c-Myc function by preventing its nuclear localization. Interestingly, increased Bcr dosage in COS-7 and K-562 cells correlates with a reduction in c-Myc protein levels, suggesting that Bcr may in fact be limiting c-Myc activity by regulating its stability. These data indicate that Bcr is a novel regulator of c-Myc function whose disrupted expression may contribute to the high level of c-Myc protein that is observed in Bcr-Abl transformed cells
Radiation-induced Assembly of Rad51 and Rad52 Recombination Complex Requires ATM and c-Abl
Cells from individuals with the recessive cancer-prone disorder ataxia telangiectasia (A-T) are hypersensitive to ionizing radiation (I-R). ATM (mutated in A-T) is a protein kinase whose activity is stimulated by I-R. c-Abl, a nonreceptor tyrosine kinase, interacts with ATM and is activated by ATM following I-R. Rad51 is a homologue of bacterial RecA protein required for DNA recombination and repair. Here we demonstrate that there is an I-R-induced Rad51 tyrosine phosphorylation, and this induction is dependent on both ATM and c-Abl. ATM, c-Abl, and Rad51 can be co-immunoprecipitated from cell extracts. Consistent with the physical interaction, c-Abl phosphorylates Rad51 in vitro and in vivo. In assays using purified components, phosphorylation of Rad51 by c-Abl enhances complex formation between Rad51 and Rad52, which cooperates with Rad51 in recombination and repair. After I-R, an increase in association between Rad51 and Rad52 occurs in wild-type cells but not in cells with mutations that compromise ATM or c-Abl. Our data suggest signaling mediated through ATM, and c-Abl is required for the correct post-translational modification of Rad51, which is critical for the assembly of Rad51 repair protein complex following I-R
Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1BCR-ABL-JAK2 Complex
This is a pre-copyedited, author-produced version of an article accepted for publication in JNCI: Journal of the National Cancer Institute following peer review. The version of record Chen, M., et al. (2013). "Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1–BCR-ABL–JAK2 Complex." JNCI: Journal of the National Cancer Institute 105(6): 405-423. is available online at: https://doi.org/10.1093/jnci/djt006This work was funded by the Canadian Cancer Society (grant 700289), in part by the Canadian Institutes of Health Research, the Leukemia & Lymphoma Society of Canada, and the Cancer Research Society (XJ), the Canadian Cancer Society Research Institute (AE, XJ, CE), Cancer Research UK Programme grant C11074/A11008 (TLH), the Glasgow Experimental Cancer Medicine Centre, which is funded by Cancer Research UK and by the Chief Scientist’s Office (Scotland), and Cancer Research UK grant C973/A9894 (JP, JS). M. Chen was supported by a fellowship from Lymphoma Foundation Canada, and P. Gallipoli was supported by Medical Research Council grant G1000288. X. Jiang was a Michael Smith Foundation for Health Research Scholar
- …