68 research outputs found
Interaction imaging with amplitude-dependence force spectroscopy
Knowledge of surface forces is the key to understanding a large number of
processes in fields ranging from physics to material science and biology. The
most common method to study surfaces is dynamic atomic force microscopy (AFM).
Dynamic AFM has been enormously successful in imaging surface topography, even
to atomic resolution, but the force between the AFM tip and the surface remains
unknown during imaging. Here, we present a new approach that combines high
accuracy force measurements and high resolution scanning. The method, called
amplitude-dependence force spectroscopy (ADFS) is based on the
amplitude-dependence of the cantilever's response near resonance and allows for
separate determination of both conservative and dissipative tip-surface
interactions. We use ADFS to quantitatively study and map the nano-mechanical
interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is
compatible with commercial atomic force microscopes and we anticipate its
wide-spread use in taking AFM toward quantitative microscopy
Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed
Modified cantilever arrays improve sensitivity and reproducibility of nanomechanical sensing in living cells
Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells. Moreover, we demonstrate that a direct link between cells and molecules creates a continuous connectivity which acts like a percolating network to propagate mechanical forces over both short and long length-scales. The findings provide mechanistic insights into how cancer cells interact with one another and with their microenvironments, enabling them to invade the surrounding tissues. Further, with this system it is possible to understand how cancer clusters are able to co-ordinate their migration through narrow blood capillaries
Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip
The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing
Silicon chips detect intracellular pressure changes in living cells
20 p.4 fig.The ability to measure pressure changes inside different components of a living cell is important, because it offers an alternative way to study fundamental processes that involve cell deformation1. Most current techniques such as pipette aspiration2, optical interferometry3 or external pressure probes4 use either indirect measurement methods or approaches that can damage the cell membrane. Here we show that a silicon chip small enough to be internalized into a living cell can be used to detect pressure changes inside the cell. The chip, which consists of two membranes separated by a vacuum gap to form a Fabry–Pérot resonator, detects pressure changes that can be quantified from the intensity of the reflected light. Using this chip, we show that extracellular hydrostatic pressure is transmitted into HeLa cells and that these cells can endure hypo-osmotic stress without significantly increasing their intracellular hydrostatic pressure.This work was supported by the Spanish Government grants TEC2009-07687-E, TEC2011-29140-C03-01 and SAF2010-21879-C02-01.Peer reviewe
The emergence of multifrequency force microscopy
Atomic force microscopy uses the deflection of a cantilever with a sharp tip to
examine surfaces, and conventional dynamic force microscopy involves the
excitation and detection of a single frequency component of the tip’s motion.
Information about the properties of a sample is, however, encoded in the motion
of the probe and the dynamics of the cantilever are highly nonlinear. Therefore,
information included in the other frequency components is irreversibly lost.
Multifrequency force microscopy involves the excitation and/or detection of
several frequencies of the probe’s oscillation, and has the potential to overcome
limitations in spatial resolution and acquisition times of conventional force
microscopes. It could also provide new applications in fields such as energy
storage and nanomedicine. Here we review the development of multifrequency
force microscopy methods, highlighting the five most prominent approaches. We
also examine the range of applications offered by the technique, which include
mapping the flexibility of proteins, imaging the mechanical vibrations of carbonbased
resonators, mapping ion diffusion, and imaging the subsurface of cells.We are grateful for financial support from the Ministerio de Ciencia e Innovación (CSD2010-00024, MAT2009-08650).Peer reviewe
- …