307 research outputs found

    The paradox of being a woman teacher

    Get PDF
    In this article I follow genealogical lines of analysis in an attempt to map the different discourses and practices that interweave women’s position in education today. I have theorised education as a nexus of created paradoxical spaces, where the female self has attempted to surpass closed boundaries and to question the dichotomy of the feminised private and/or the masculine public. I have also considered the importance of time restrictions upon women’s lives and have paid attention to the multifarious ways these lives are highly structured by specific space/time regulations. The genealogical cartography I have drawn, depicts various positions, where the female self has created parodic unities and temporary coalitions. Finally in tracing exit points that education has offered women, I have considered some of the implications of feminist theories for the subversion of the various dilemmas and dichotomies the female subject has lived through

    The CD154/CD40 Interaction Required for Retrovirus-Induced Murine Immunodeficiency Syndrome Is Not Mediated by Upregulation of the CD80/CD86 Costimulatory Molecules

    Get PDF
    C57BL/6 (B6) mice infected with LP-BM5 retroviruses develop disease, including an immunodeficiency similar to AIDS. This disease, murine AIDS (MAIDS), is inhibited by in vivo anti-CD154 monoclonal antibody treatment. The similar levels of insusceptibility of CD40−/− and CD154−/− B6 mice indicate that CD154/CD40 molecular interactions are required for MAIDS. CD4+ T and B cells, respectively, provide the CD154 and CD40 expression needed for MAIDS induction. Here, the required CD154/CD40 interaction is shown to be independent of CD80 and CD86 expression: CD80/CD86−/− B6 mice develop MAIDS after LP-BM5 infection

    CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease

    Get PDF
    IFN-γ–producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but \u3e80% of control in the spleen. Moreover, increasing the IFN-γ–producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3+KLRG1-CX3CR1- subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology

    Enhancing therapeutic vaccination by blocking PD-1–mediated inhibitory signals during chronic infection

    Get PDF
    Therapeutic vaccination is a potentially promising strategy to enhance T cell immunity and viral control in chronically infected individuals. However, therapeutic vaccination approaches have fallen short of expectations, and effective boosting of antiviral T cell responses has not always been observed. One of the principal reasons for the limited success of therapeutic vaccination is that virus-specific T cells become functionally exhausted during chronic infections. We now provide a novel strategy for enhancing the efficacy of therapeutic vaccines. In this study, we show that blocking programmed death (PD)-1/PD-L1 inhibitory signals on exhausted CD8+ T cells, in combination with therapeutic vaccination, synergistically enhances functional CD8+ T cell responses and improves viral control in mice chronically infected with lymphocytic choriomeningitis virus. This combinatorial therapeutic vaccination was effective even in the absence of CD4+ T cell help. Thus, our study defines a potent new approach to augment the efficacy of therapeutic vaccination by blocking negative signals. Such an approach may have broad applications in developing treatment strategies for chronic infections in general, and perhaps also for tumors

    The Cell Surface Receptor SLAM Controls T Cell and Macrophage Functions

    Get PDF
    Signaling lymphocyte activation molecule (SLAM), a glycoprotein expressed on activated lymphocytes and antigen-presenting cells, has been shown to be a coregulator of antigen-driven T cell responses and is one of the two receptors for measles virus. Here we show that T cell receptor–induced interleukin (IL)-4 secretion by SLAM−/− CD4+ cells is down-regulated, whereas interferon γ production by CD4+ T cells is only slightly up-regulated. Although SLAM controls production of IL-12, tumor necrosis factor, and nitric oxide in response to lipopolysaccharide (LPS) by macrophages, SLAM does not regulate phagocytosis and responses to peptidoglycan or CpG. Thus, SLAM acts as a coreceptor that regulates signals transduced by the major LPS receptor Toll-like receptor 4 on the surface of mouse macrophages. A defective macrophage function resulted in an inability of SLAM−/− C57Bl/6 mice to remove the parasite Leishmania major. We conclude that the coreceptor SLAM plays a central role at the interface of acquired and innate immune responses
    corecore