3 research outputs found

    Role of DNA topology in uptake of polyplex molecules by dendritic cells.

    Get PDF
    Dendritic cells (DCs) are an attractive target for DNA vaccines as they are potent antigen presenting cells. This study demonstrated how non-viral gene delivery to DCs involving complexes of poly-l-lysine (PLL) and plasmid DNA (pDNA) (polyplexes) showed dependence on DNA vector topology. DNA topology is of importance from both production and regulatory viewpoints. In our previous study with CHO cells we demonstrated that polyplex uptake was dependent on DNA topology whereby complexes containing supercoiled (SC) pDNA were smaller, more resistant to nucleases and more effectively condensed by PLL than open circular (OC) and linear-pDNA complexes. In this study polyplex uptake in DCs was measured qualitatively and quantitatively by confocal microscopy along with gene expression studies and measurement of DC phenotype. PLL is known for its ability to condense DNA and serve as an effective gene delivery vehicle. Quantification studies revealed that by 1h following uptake 15% (±2.59% relative standard error [RSE]) of SC-pDNA polyplexes were identified to be associated (fluorescent co-localisation) with the nucleus, in comparison to no nuclear association identified for OC- and linear-pDNA complexes. By 48 h following uptake, 30% (±1.82% RSE) of SC-pDNA complexes associated with the nucleus in comparison to 16% (±4.40% RSE) and 12% (±6.97% RSE) of OC- and linear-pDNA polyplexes respectively. Confocal microscopy images showed how DNA and PLL remained associated following uptake by dual labelling. Polyplex (containing 20 μg pDNA) gene expression (plasmid encoded lacZ [β-galactosidase] reporter gene) in DCs was greatest for SC-pDNA polyplexes at 14.12% unlike that of OC- (9.59%) and linear-pDNA (7.43%). DCs express cell surface markers which contribute towards antigen presentation. Polyplex gene expression did not alter DC phenotype through surface marker expression. This may be due to the pDNA dose employed (20μg) as other studies have used doses as high as 200 μg pDNA to induce DC phenotypic changes. Although no change in DC phenotype occurred, this could be advantageous in terms of biocompatibility. Collectively these results indicate that DNA topology is an important parameter for DC vector design, particularly pDNA in the SC conformation in regards to DNA vaccination studies

    High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli

    No full text
    Numerous high-value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin-arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway. In this study, we have produced a heterologous protein (green fluorescent protein; GFP) in Escherichia coli and have used batch and fed-batch fermentation systems to test the ability of the newly engineered Tat system to export this protein into the periplasm under industrial-type production conditions. GFP cannot be exported by the Sec pathway in an active form. We first tested the ability of five different Tat signal peptides to export GFP, and showed that the TorA signal peptide directed most efficient export. Under batch fermentation conditions, it was found that TorA-GFP was exported efficiently in wild type cells, but a twofold increase in periplasmic GFP was obtained when the TatABC components were co-expressed. In both cases, periplasmic GFP peaked at about the 12?h point during fermentation but decreased thereafter, suggesting that proteolysis was occurring. Typical yields were 60?mg periplasmic GFP per liter culture. The cells over-expressed the tat operon throughout the fermentation process and the Tat system was shown to be highly active over a 48?h induction period. Fed-batch fermentation generated much greater yields: using glycerol feed rates of 0.4, 0.8, and 1.2?mL?h?1, the cultures reached OD600 values of 180 and periplasmic GFP levels of 0.4, 0.85, and 1.1?g?L?1 culture, respectively. Most or all of the periplasmic GFP was shown to be active. These export values are in line with those obtained in industrial production processes using Sec-dependent export approaches. Biotechnol. Bioeng. 2012; 109: 2533–2542. © 2012 Wiley Periodicals, Inc
    corecore