744 research outputs found

    Self collimation of ultrasound in a 3D sonic crystal

    Full text link
    We present the experimental demonstration of self-collimation (subdiffractive propagation) of an ultrasonic beam inside a three-dimensional sonic crystal. The crystal is formed by two crossed steel cylinders structures in a woodpile-like geometry disposed in water. Measurements of the 3D field distribution show that a narrow beam which diffractively spreads in the absence of the sonic crystal is strongly collimated in propagation inside the crystal, demonstrating the 3D self-collimation effect.Comment: 3 figures, submitted to Applied Physics Letter

    Spontaneous symmetry breaking as a resource for noncritically squeezed light

    Full text link
    In the last years we have proposed the use of the mechanism of spontaneous symmetry breaking with the purpose of generating perfect quadrature squeezing. Here we review previous work dealing with spatial (translational and rotational) symmetries, both on optical parametric oscillators and four-wave mixing cavities, as well as present new results. We then extend the phenomenon to the polarization state of the signal field, hence introducing spontaneous polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in which the phenomenon can be investigated at the single-photon-pair level in a non-dissipative case, with the purpose of understanding it from a most fundamental point of view.Comment: Review for the proceedings of SPIE Photonics Europe. 11 pages, 5 figures

    Modelo de elementos finitos de la columna lumbar

    Get PDF
    En este trabajo se describe un modelo de Elementos Finitos de la columna lumbar humana. El objetivo buscado es la utilización del mismo como herramienta de investigación aplicada a la cirugía ortopédica de columna lumbar. Para conseguir este objetivo se ha elaborado un modelo no lineal y paramétrico de la columna lumbar completa, el cual puede modificarse con facilidad tanto en su geometría como en sus características mecánicas de modo que puedan reflejarse tanto distintas alteraciones segmentarias como diversas técnicas de fijación. También se expone la contrastación del modelo, realizada a partir de resultados experimentales recogidos de la literatura sobre el tema.Peer Reviewe

    High-speed noise-free optical quantum memory

    Full text link
    Quantum networks promise to revolutionise computing, simulation, and communication. Light is the ideal information carrier for quantum networks, as its properties are not degraded by noise in ambient conditions, and it can support large bandwidths enabling fast operations and a large information capacity. Quantum memories, devices that store, manipulate, and release on demand quantum light, have been identified as critical components of photonic quantum networks, because they facilitate scalability. However, any noise introduced by the memory can render the device classical by destroying the quantum character of the light. Here we introduce an intrinsically noise-free memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We consequently demonstrate for the first time successful storage of GHz-bandwidth heralded single photons in a warm atomic vapour with no added noise; confirmed by the unaltered photon statistics upon recall. Our ORCA memory platform meets the stringent noise-requirements for quantum memories whilst offering technical simplicity and high-speed operation, and therefore is immediately applicable to low-latency quantum networks

    Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons

    Get PDF
    We present a method for the study of quantum fluctuations of dissipative structures forming in nonlinear optical cavities, which we illustrate in the case of a degenerate, type I optical parametric oscillator. The method consists in (i) taking into account explicitly, through a collective variable description, the drift of the dissipative structure caused by the quantum noise, and (ii) expanding the remaining -internal- fluctuations in the biorthonormal basis associated to the linear operator governing the evolution of fluctuations in the linearized Langevin equations. We obtain general expressions for the squeezing and intensity fluctuations spectra. Then we theoretically study the squeezing properties of a special dissipative structure, namely, the bright cavity soliton. After reviewing our previous result that in the linear approximation there is a perfectly squeezed mode irrespectively of the values of the system parameters, we consider squeezing at the bifurcation points, and the squeezing detection with a plane--wave local oscillator field, taking also into account the effect of the detector size on the level of detectable squeezing.Comment: 10 figure

    Inflammatory and oxidative stress markers associated with decreased cervical length in pregnancy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134275/1/aji12545_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134275/2/aji12545.pd

    Comparison of melting frost layers after 2 frozen methods in pork cuts (longissimus dorsi)

    Get PDF
    AbstractThe frost formation and fusion of ice crystal on complex materials have a great importance, since they modify quality meat characteristics. Furthermore, changes take place in fiber morphology by formation of ice crystal during freezing. The aim of this work was to measure the frost formation and melting. Morphological frost difference was found, and the fusion times were different too. All the results can be useful to complement and understand the complex thermal processes with phase change at low temperatures. This study implicates thermal and mass concepts; they explain the frost formation and the melting process as an opposing phenomenon

    Quantum squeezing of optical dissipative structures

    Full text link
    We show that any optical dissipative structure supported by degenerate optical parametric oscillators contains a special transverse mode that is free from quantum fluctuations when measured in a balanced homodyne detection experiment. The phenomenon is not critical as it is independent of the system parameters and, in particular, of the existence of bifurcations. This result is a consequence of the spatial symmetry breaking introduced by the dissipative structure. Effects that could degrade the squeezing level are considered.Comment: 4 pages and a half, 1 fugure. Version to appear in Europhysics Letter
    corecore