111 research outputs found

    Populations:Ecology and genetics

    Get PDF

    Differential Performance of a Specialist and Two Generalist Herbivores and Their Parasitoids on Plantago lanceolata

    Get PDF
    The ability to cope with plant defense chemicals differs between specialist and generalist species. In this study, we examined the effects of the concentration of the two main iridoid glycosides (IGs) in Plantago lanceolata, aucubin and catalpol, on the performance of a specialist and two generalist herbivores and their respective endoparasitoids. Development of the specialist herbivore Melitaea cinxia was unaffected by the total leaf IG concentration in its host plant. By contrast, the generalist herbivores Spodoptera exigua and Chrysodeixis chalcites showed delayed larval and pupal development on plant genotypes with high leaf IG concentrations, respectively. This result is in line with the idea that specialist herbivores are better adapted to allelochemicals in host plants on which they are specialized. Melitaea cinxia experienced less post-diapause larval and pupal mortality on its local Finnish P. lanceolata than on Dutch genotypes. This could not be explained by differences in IG profiles, suggesting that M. cinxia has adapted in response to attributes of its local host plants other than to IG chemistry. Development of the specialist parasitoid Cotesia melitaearum was unaffected by IG variation in the diet of its host M. cinxia, a response that was concordant with that of its host. By contrast, the development time responses of the generalist parasitoids Hyposoter didymator and Cotesia marginiventris differed from those of their generalist hosts, S. exigua and C. chalcites. While their hosts developed slowly on high-IG genotypes, development time of H. didymator was unaffected. Cotesia marginiventris actually developed faster on hosts fed high-IG genotypes, although they then had short adult longevity. The faster development of C. marginiventris on hosts that ate high-IG genotypes is in line with the “immunocompromized host” hypothesis, emphasizing the potential negative effects of toxic allelochemicals on the host’s immune response

    Effects of tomato inoculation with the entomopathogenic fungus Metarhizium brunneum on spider mite resistance and the rhizosphere microbial community

    Get PDF
    Entomopathogenic fungi have been well exploited as biocontrol agents that can kill insects through direct contact. However, recent research has shown that they can also play an important role as plant endophytes, stimulating plant growth, and indirectly suppressing pest populations. In this study, we examined the indirect, plant-mediated, effects of a strain of entomopathogenic fungus, Metarhizium brunneum on plant growth and population growth of two-spotted spider mites (Tetranychus urticae) in tomato, using different inoculation methods (seed treatment, soil drenching and a combination of both). Furthermore, we investigated changes in tomato leaf metabolites (sugars and phenolics), and rhizosphere microbial communities in response to M. brunneum inoculation and spider mite feeding. A significant reduction in spider mite population growth was observed in response to M. brunneum inoculation. The reduction was strongest when the inoculum was supplied both as seed treatment and soil drench. This combination treatment also yielded the highest shoot and root biomass in both spider mite-infested and non-infested plants, while spider mite infestation increased shoot but reduced root biomass. Fungal treatments did not consistently affect leaf chlorogenic acid and rutin concentrations, but M. brunneum inoculation via a combination of seed treatment and soil drenching reinforced chlorogenic acid (CGA) induction in response to spider mites and under these conditions the strongest spider mite resistance was observed. However, it is unclear whether the M. brunneum-induced increase in CGA contributed to the observed spider mite resistance, as no general association between CGA levels and spider mite resistance was observed. Spider mite infestation resulted in up to two-fold increase in leaf sucrose concentrations and a three to five-fold increase in glucose and fructose concentrations, but these concentrations were not affected by fungal inoculation. Metarhizium, especially when applied as soil drench, impacted the fungal community composition but not the bacterial community composition which was only affected by the presence of spider mites. Our results suggest that in addition to directly killing spider mites, M. brunneum can indirectly suppress spider mite populations on tomato, although the underlying mechanism has not yet been resolved, and can also affect the composition of the soil microbial community

    Invasive earthworms reduce chemical defense and increase herbivory and pathogen infection in native trees

    Get PDF
    Recent research shows that earthworms can alter defense traits of plants against herbivores and pathogens by affecting soil biochemistry. Yet, the effects of invasive earthworms on defense traits of native plants from previously earthworm-free ecosystems as well as the consequences for multitrophic interactions are virtually unknown. Here we use a combination of an observational study and a complementary experimental study to investigate the effects of invasive earthworms on leaf defense traits, herbivore damage and pathogen infection in two poplar tree species (Populus balsamifera and Populus tremuloides) native to North American boreal forests. Our observational study showed that earthworm invasion was associated with enhanced leaf herbivory (by leaf-chewing insects) in saplings of both tree species. However, we only detected significant shifts in the concentration of chemical defense compounds in response to earthworm invasion for P. balsamifera. Specifically, leaf phenolic concentrations, including salicinoids and catechin, were lower in P. balsamifera from earthworm-invaded sites. Our experimental study confirmed an earthworm-induced reduction in leaf defense levels in P. balsamifera for one of the defense compounds, tremulacin. The experimental study additionally showed that invasive earthworms reduced leaf dry matter content, potentially increasing leaf palatability, and enhanced susceptibility of trees to infection by a fungal pathogen, but not to aphid infestation, in the same tree species. Synthesis. Our results show that invasive earthworms can decrease the concentrations of some chemical defense compounds in P. balsamifera, which could make them susceptible to leaf-chewing insects. Such potential impacts of invasive earthworms are likely to have implications for tree survival and competition, native tree biodiversity and ecosystem functioning

    Growing Research Networks on Mycorrhizae for Mutual Benefits

    Get PDF
    Research on mycorrhizal interactions has traditionally developed into separate disciplines addressing different organizational levels. This separation has led to an incomplete understanding of mycorrhizal functioning. Integration of mycorrhiza research at different scales is needed to understand the mechanisms underlying the context dependency of mycorrhizal associations, and to use mycorrhizae for solving environmental issues. Here, we provide a road map for the integration of mycorrhiza research into a unique framework that spans genes to ecosystems. Using two key topics, we identify parallels in mycorrhiza research at different organizational levels. Based on two current projects, we show how scientific integration creates synergies, and discuss future directions. Only by overcoming disciplinary boundaries, we will achieve a more comprehensive understanding of the functioning of mycorrhizal associations
    • …
    corecore