270 research outputs found

    Wavelet Based Fractal Analysis of Airborne Pollen

    Full text link
    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply the wavelet transform to study the multifractal characteristics of an a irborne pollen time series. We find the persistence behaviour associated to low pollen concentration values and to the most rare events of highest pollen co ncentration values. The information and the correlation dimensions correspond to a chaotic system showing loss of information with time evolution.Comment: 11 pages, 7 figure

    Quantum Dating Market

    Get PDF

    Habitat fragmentation and genetic variability of tetrapod populations

    Get PDF
    In the last two centuries, the development of human civilization has transformed large natural areas into anthropogenic landscapes, making habitat fragmentation a pervasive feature of modern landscapes. In animal populations, habitat fragmentation may alter their genetic diversity and structure due to limited gene flow and dispersion and reduced effective population sizes, potentially leading to genetic drift in small habitat patches. We tested the hypothesis that habitat fragmentation affects genetic diversity of tetrapod populations through a meta-analysis. We also examined certain life history traits of species and particular external landscape factors that may determine the magnitude of genetic erosion observed in fragmented habitats. Our results showed that habitat fragmentation reduces overall genetic diversity of tetrapod populations. Stronger negative fragmentation effects were detected for amphibians, birds, and mammals. Within each taxonomic group, species with large body size were more strongly affected by fragmentation. Particularly within mammals, we found that less vagile species with short generation times represent the most susceptible tetrapod group to lose genetic diversity in fragmented habitats. As external drivers, we found a non-significant trend of lower fragmentation effects in study systems of less than 50 years and stronger effects in older (>100 years) fragmented systems. As expected, the extent of habitat loss was also important in determining the magnitude of genetic erosion in tetrapods. Extreme habitat loss showed stronger negative effects on genetic diversity irrespectively of taxonomic groups. The information gathered in this review also highlights research bias and gaps in the literature.Fil: Rivera Ortíz, F. A.. Universidad Nacional Autonoma de Mexico. Centro de Investigaciones En Ecosistemas; MéxicoFil: Aguilar, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); ArgentinaFil: Arizmendi, M. D. C.. Universidad Nacional Autónoma de México; MéxicoFil: Quesada, M.. Universidad Nacional Autonoma de Mexico. Centro de Investigaciones En Ecosistemas; MéxicoFil: Oyama, K.. Universidad Nacional Autonoma de Mexico. Centro de Investigaciones En Ecosistemas; Méxic

    Trapping mechanism in overdamped ratchets with quenched noise

    Full text link
    A trapping mechanism is observed and proposed as the origin of the anomalous behavior recently discovered in transport properties of overdamped ratchets subject to external oscillatory drive in the presence of quenched noise. In particular, this mechanism is shown to appear whenever the quenched disorder strength is greater than a threshold value. The minimum disorder strength required for the existence of traps is determined by studying the trap structure in a disorder configuration space. An approximation to the trapping probability density function in a disordered region of finite length included in an otherwise perfect ratchet lattice is obtained. The mean velocity of the particles and the diffusion coefficient are found to have a non-monotonic dependence on the quenched noise strength due to the presence of the traps.Comment: 21 pages, 6 figures, to appear in PR
    corecore