32 research outputs found

    Alignment dependent enhancement of the photo-electron cutoff for multi-photon ionization of molecules

    Get PDF
    The multiphoton ionization rate of molecules depends on the alignment of the molecular axis with respect to the ionizing laser polarization. By studying molecular frame photo-electron angular distributions from N2_2, O2_2 and benzene, we illustrate how the angle-dependent ionization rate affects the photo-electron cutoff energy. We find alignment can enhance the high energy cutoff of the photo-electron spectrum when probing along a nodal plane or when ionization is otherwise suppressed. This is supported by calculations using a tunneling model with a single ion state.Comment: 4 pages, 4 figure

    Momentum space tomographic imaging of photoelectrons

    Full text link
    We apply tomography, a general method for reconstructing 3-D distributions from multiple projections, to reconstruct the momentum distribution of electrons produced via strong field photoionization. The projections are obtained by rotating the electron distribution via the polarization of the ionizing laser beam and recording a momentum spectrum at each angle with a 2-D velocity map imaging spectrometer. For linearly polarized light the tomographic reconstruction agrees with the distribution obtained using an Abel inversion. Electron tomography, which can be applied to any polarization, will simplify the technology of electron imaging. The method can be directly generalized to other charged particles.Comment: Accepted by J. Phys.

    Dispersion-Enhanced Laser Gyroscope

    Get PDF
    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response

    Partitioning of the linear photon momentum in multiphoton ionization

    Get PDF
    The balance of the linear photon momentum in multiphoton ionization is studied experimentally. In the experiment argon and neon atoms are singly ionized by circularly polarized laser pulses with a wavelength of 800 nm and 1400 nm in the intensity range of 10^{14} - 10^{15} W/cm^2. The photoelectrons are measured using velocity map imaging. We find that the photoelectrons carry linear momentum corresponding to the photons absorbed above the field free ionization threshold. Our finding has implications for concurrent models of the generation of terahertz radiation in filaments.Comment: 4 pages, 3 figure

    XUV Frequency Combs via Femtosecond Enhancement Cavities

    Full text link
    We review the current state of tabletop extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC). Recent developments have enabled generation of high photon flux (1014 photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the spectral region from 40 nm - 120 nm. This level of performance has enabled precision spectroscopy with XUV frequency combs and promises further applications in XUV spectroscopic and photoemission studies. We discuss the theory of operation and experimental details of the fsEC and XUV generation based on HHG, including current technical challenges to increasing the photon flux and maximum photon energy produced by this type of system. Current and future applications for these sources are also discussed.Comment: invited review article, 38 page

    Trypanosoma cruzi: Effects of social stress in Calomys callosus a natural reservoir of infection

    Get PDF
    Social environment can represent a major source of stress affecting cortisol and/or corticosterone levels, thereby altering the immune response. We have investigated the effects of social isolation on the development of Trypanosoma cruzi infection in female Calomys callosus, a natural reservoir of this protozoan parasite. Animals were divided in groups of five animals each. The animals of one group were kept together in a single cage. In a second group, four females were kept together in a cage with one male. In the final group, five individuals were kept isolated in private cages. The isolated animals showed body weight reduction, decreased numbers of peritoneal macrophages, lower global leucocytes counts, smaller lytic antibody percentage and a significantly higher level of blood parasites compared to the other animals. Their behavior was also altered. They were more aggressive than grouped females, or females exposed to the presence of a male. These results suggest that isolation creates a distinct social behavior in which immunity is impaired and pathogenesis is enhanced. (C) 2008 Elsevier Inc. All rights reserved
    corecore