2,645 research outputs found

    Classification of states of single-jj fermions with JJ-pairing interaction

    Full text link
    In this paper we show that a system of three fermions is exactly solvable for the case of a single-jj in the presence of an angular momentum-JJ pairing interaction. On the basis of the solutions for this system, we obtain new sum rules for six-jj symbols. It is also found that the "non-integer" eigenvalues of three fermions with angular momentum II around the maximum appear as "non-integer" eigenvalues of four fermions when II is around (or larger than) JmaxJ_{\rm max} and the Hamiltonian contains only an interaction between pairs of fermions coupled to spin J=Jmax=2j1J=J_{\rm max}=2j-1. This pattern is also found in five and six fermion systems. A boson system with spin ll exhibits a similar pattern.Comment: to be published in Physical Review

    General pairing interactions and pair truncation approximations for fermions in a single-j shell

    Full text link
    We investigate Hamiltonians with attractive interactions between pairs of fermions coupled to angular momentum J. We show that pairs with spin J are reasonable building blocks for the low-lying states. For systems with only a J = Jmax pairing interaction, eigenvalues are found to be approximately integers for a large array of states, in particular for those with total angular momenta I le 2j. For I=0 eigenstates of four fermions in a single-j shell we show that there is only one non-zero eigenvalue. We address these observations using the nucleon pair approximation of the shell model and relate our results with a number of currently interesting problems.Comment: a latex text file and 2 figures, to be publishe

    One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory

    Full text link
    The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A=15,17,39A=15,17,39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current doesn't improve the description of nuclear isovector magnetic moments for the concerned nuclei.Comment: 9 pages, 1 figure, 3 table

    Analytic approach to nuclear rotational states: The role of spin - A minimal model -

    Full text link
    We use a simple field theory model to investigate the role of the nucleon spin for the magnetic sum rules associated with the low-lying collective scissors mode in deformed nuclei. Various constraints from rotational symmetry are elucidated and discussed. We put special emphasis on the coupling of the spin part of the M1 operator to the low lying collective modes, and investigate how this coupling changes the sum rules.Comment: 15 pages, 4 figure

    Chiral Symmetry and N*(1440) -> N pi pi Decay

    Full text link
    The N*(1440) -> N pi pi decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction which is absent in the recent study of Hern{\'a}ndez et al. The contact interaction is introduced into their model, and is found to be necessary for the simultaneous description of g_{RN pi pi} and the pi-pi and pi-N invariant mass distributions.Comment: 12 page

    Critical-Point Symmetry in a Finite System

    Full text link
    At a critical point of a second order phase transition the intrinsic energy surface is flat and there is no stable minimum value of the deformation. However, for a finite system, we show that there is an effective deformation which can describe the dynamics at the critical point. This effective deformation is determined by minimizing the energy surface after projection onto the appropriate symmetries. We derive analytic expressions for energies and quadrupole rates which provide good estimates for these observables at the critical point.Comment: 12 pages, 2 figures, 2 tables, Phys. Rev. Lett. in pres

    Lowest eigenvalue of the nuclear shell model Hamiltonian

    Full text link
    In this paper we investigate regular patterns of matrix elements of the nuclear shell model Hamiltonian HH, by sorting the diagonal matrix elements from the smaller to larger values. By using simple plots of non-zero matrix elements and lowest eigenvalues of artificially constructed "sub-matrices" hh of HH, we propose a new and simple formula which predicts the lowest eigenvalue with remarkable precisions.Comment: six pages, four figures, Physical Review C, in pres

    Residual proton-neutron interactions and the NpNnN_{\rm p} N_{\rm n} scheme

    Full text link
    We investigate the correlation between integrated proton-neutron interactions obtained by using the up-to-date experimental data of binding energies and the NpNnN_{\rm p} N_{\rm n}, the product of valence proton number and valence neutron number with respect to the nearest doubly closed nucleus. We make corrections on a previously suggested formula for the integrated proton-neutron interaction. Our results demonstrate a nice, nearly linear, correlation between the integrated p-n interaction and NpNnN_{\rm p} N_{\rm n}, which provides us with a firm foundation of the applicability of the NpNnN_{\rm p} N_{\rm n} scheme to nuclei far from the stability line.Comment: four pages, three figures, Physical Review C, in pres

    Joint effect of lattice interaction and potential fluctuation in colossal magnetoresistive manganites

    Full text link
    Taking into account both the Jahn-Teller lattice distortion and the on-site electronic potential fluctuations in the orbital-degenerated double-exchange model, in which both the core-spin and the lattice distortion are treated classically, we investigate theoretically the metal-insulator transition (MIT) in manganites by considering the electronic localization effect. An inverse matrix method is developed for calculation in which we use the inverse of the transfer matrix to obtain the localization length. We find that within reasonable range of parameters, both the lattice effect and the potential fluctuation are responsible to the occurrence of the MIT. The role of the orbital configuration is also discussed.Comment: 4 figure
    corecore