25,745 research outputs found

    On the Origin of Traveling Pulses in Bistable Systems

    Full text link
    The interaction between a pair of Bloch fronts forming a traveling domain in a bistable medium is studied. A parameter range beyond the nonequilibrium Ising-Bloch bifurcation is found where traveling domains collapse. Only beyond a second threshold the repulsive front interactions become strong enough to balance attractive interactions and asymmetries in front speeds, and form stable traveling pulses. The analysis is carried out for the forced complex Ginzburg-Landau equation. Similar qualitative behavior is found in the bistable FitzHugh-Nagumo model.Comment: 5 pages, RevTeX. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Special approach/docking testcase results

    Get PDF
    As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project

    Kinematic Equations for Front Motion and Spiral-Wave Nucleation

    Full text link
    We present a new set of kinematic equations for front motion in bistable media. The equations extend earlier kinematic approaches by coupling the front curvature with the order parameter associated with a parity breaking front bifurcation. In addition to naturally describing the core region of rotating spiral waves the equations can be be used to study the nucleation of spiral-wave pairs along uniformly propagating fronts. The analysis of spiral-wave nucleation reduces to the simpler problem of droplet, or domain, nucleation in one space dimension.Comment: 8 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Propagation Failure in Excitable Media

    Full text link
    We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small perturbations, externally applied or from internal instabilities, may cause pulse propagation failure (wave breakup) provided the system is close enough to the bifurcation point. We derive relations showing how the pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demonstrate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky reaction induced either by an electric field or a transverse instability are manifestations of this mechanism.Comment: 8 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Order Parameter Equations for Front Transitions: Nonuniformly Curved Fronts

    Full text link
    Kinematic equations for the motion of slowly propagating, weakly curved fronts in bistable media are derived. The equations generalize earlier derivations where algebraic relations between the normal front velocity and its curvature are assumed. Such relations do not capture the dynamics near nonequilibrium Ising-Bloch (NIB) bifurcations, where transitions between counterpropagating Bloch fronts may spontaneously occur. The kinematic equations consist of coupled integro-differential equations for the front curvature and the front velocity, the order parameter associated with the NIB bifurcation. They capture the NIB bifurcation, the instabilities of Ising and Bloch fronts to transverse perturbations, the core structure of a spiral wave, and the dynamic process of spiral wave nucleation.Comment: 20 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Order Parameter Equations for Front Transitions: Planar and Circular Fronts

    Full text link
    Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts. Often this results in nonsteady asymptotic motion such as breathing and domain breakup. Exploiting the time scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order parameter describing transitions between left and right propagating fronts. Perturbations, such as a space dependent advective field or uniform curvature (axisymmetric spots), couple these two degrees of freedom. In both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron: http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    Midlife and Late-Life Vascular Risk Factors and White Matter Microstructural Integrity: The Atherosclerosis Risk in Communities Neurocognitive Study.

    Get PDF
    BACKGROUND: Diffusion tensor imaging measures of white matter (WM) microstructural integrity appear to provide earlier indication of WM injury than WM hyperintensities; however, risk factors for poor WM microstructural integrity have not been established. Our study quantifies the association between vascular risk factors in midlife and late life with measures of late-life WM microstructural integrity. METHODS AND RESULTS: We used data from 1851 participants in ARIC (Atherosclerosis Risk in Communities Study) who completed 3-T magnetic resonance imaging, including diffusion tensor imaging, as part of the ARIC Neurocognitive Study (ARIC-NCS). We quantified the association among lipids, glucose, and blood pressure from the baseline ARIC visit (1987-1989, ages 44-65, midlife) and visit 5 of ARIC (2011-2013, ages 67-90, late life, concurrent with ARIC-NCS) with regional and overall WM mean diffusivity and fractional anisotropy obtained at ARIC visit 5 for ARIC participants. We also considered whether these associations were independent of or modified by WM hyperintensity volumes. We found that elevated blood pressure in midlife and late life and elevated glucose in midlife, but not late life, were associated with worse late-life WM microstructural integrity. These associations were independent of the degree of WM hyperintensity, and the association between glucose and WM microstructural integrity appeared stronger for those with the least WM hyperintensity. There was little support for an adverse association between lipids and WM microstructural integrity. CONCLUSIONS: Hypertension in both midlife and late life and elevated glucose in midlife are related to worse WM microstructural integrity in late life
    • …
    corecore