11,781 research outputs found
Nonconvolution nonlinear integral Volterra equations with monotone operators
Some results about existence, uniqueness, and attractive behaviour of
solutions for nonlinear Volterra integral equations with non-convolution
kernels are presented in this paper. These results are based on similar ones
about nonlinear Volterra integral equations with convolution kernels and some
comparison techniques. Therefore, this paper is devoted to find a wide class of
nonconvolution Volterra integral equations where their solutions behave like
those of Volterra equations with convolution kernels.Comment: 13 page
Cluster detection in networks using percolation
We consider the task of detecting a salient cluster in a sensor network, that
is, an undirected graph with a random variable attached to each node. Motivated
by recent research in environmental statistics and the drive to compete with
the reigning scan statistic, we explore alternatives based on the percolative
properties of the network. The first method is based on the size of the largest
connected component after removing the nodes in the network with a value below
a given threshold. The second method is the upper level set scan test
introduced by Patil and Taillie [Statist. Sci. 18 (2003) 457-465]. We establish
the performance of these methods in an asymptotic decision- theoretic framework
in which the network size increases. These tests have two advantages over the
more conventional scan statistic: they do not require previous information
about cluster shape, and they are computationally more feasible. We make
abundant use of percolation theory to derive our theoretical results, and
complement our theory with some numerical experiments.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ412 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Meloxicam decreases the migration and invasion of CF41.Mg canine mammary carcinoma cells
Indexación: Web of Science; Scopus.Cyclooxygenase (COX)-2 expression is positively correlated with malignant features in canine mammary carcinomas. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity and may therefore possess anticancer effects. Meloxicam is an NSAID that is widely used in human and veterinary medicine. High concentrations of meloxicam have been reported to be antitumorigenic in vitro; however, the effect of meloxicam at concentrations that are equivalent to those that can be obtained in vivo remains unknown. In the current study, the in vitro effects of low-dose meloxicam (0.25 μg/ml) on CF41.Mg canine mammary carcinoma cells were evaluated. The effects on cell proliferation, apoptosis, cell migration and invasion, in addition to the expression of different molecules associated with tumor invasiveness were analyzed. No effect on cell viability and apoptosis were observed. However, cell migration and invasion were significantly reduced following treatment with meloxicam. MMP-2 expression and activity were similarly reduced, explaining the impaired cell invasion. In addition, β-catenin expression was downregulated, while its phosphorylation increased. These results indicate that 0.25 μg/ml meloxicam reduces cell migration and invasion, in part through modulating MMP-2 and β-catenin expression. Additional studies are required to elucidate the mechanism associated with the anti-invasive effect of meloxicam on CF41.Mg cells. The results of the present study suggest that meloxicam has a potential adjunctive therapeutic application, which could be useful in controlling the invasion and metastasis of canine mammary carcinomas.https://www.spandidos-publications.com/10.3892/ol.2017.640
Stochastic axial compressor variable geometry schedule optimisation
The design of axial compressors is dictated by the maximisation of flow
efficiency at on design conditions whereas at part speed the requirement for
operation stability prevails. Among other stability aids, compressor variable
geometry is employed to rise the surge line for the provision of an adequate
surge margin. The schedule of the variable vanes is in turn typically obtained
from expensive and time consuming rig tests that go through a vast combination
of possible settings. The present paper explores the suitability of stochastic
approaches to derive the most flow efficient schedule of an axial compressor for
a minimum variable user defined value of the surge margin. A genetic algorithm
has been purposely developed and its satisfactory performance validated against
four representative benchmark functions. The work carries on with the necessary
thorough investigation of the impact of the different genetic operators employed
on the ability of the algorithm to find the global extremities in an effective
and efficient manner. This deems fundamental to guarantee that the algorithm is
not trapped in local extremities. The algorithm is then coupled with a
compressor performance prediction tool that evaluates each individual's
performance through a user defined fitness function. The most flow efficient
schedule that conforms to a prescribed surge margin can be obtained thereby fast
and inexpensively. Results are produced for a modern eight stage high bypass
ratio compressor and compared with experimental data available to the research.
The study concludes with the analysis of the existent relationship between surge
margin and flow efficiency for the particular compressor under scrutiny. The
study concludes with the analysis of the existent relationship between surge
margin and flow efficiency for the particular compressor under scrutiny
Einstein-AdS action, renormalized volume/area and holographic Rényi entropies
Indexación: Scopus.The authors thank D.E. Díaz, P. Sundell and A. Waldron for interesting discussions. C.A. is a Universidad Andres Bello (UNAB) Ph.D. Scholarship holder, and his work is supported by Dirección General de Investigación (DGI-UNAB). This work is funded in part by FONDECYT Grants No. 1170765 “Boundary dynamics in anti-de Sitter gravity and gauge/gravity duality ” and No. 3180620 “Entanglement Entropy and AdS gravity ”, and CONICYT Grant DPI 20140115.We exhibit the equivalence between the renormalized volume of asymptotically anti-de Sitter (AAdS) Einstein manifolds in four and six dimensions, and their renormalized Euclidean bulk gravity actions. The action is that of Einstein gravity, where the renormalization is achieved through the addition of a single topological term. We generalize this equivalence, proposing an explicit form for the renormalized volume of higher even-dimensional AAdS Einstein manifolds. We also show that evaluating the renormalized bulk gravity action on the conically singular manifold of the replica trick results in an action principle that corresponds to the renormalized volume of the regular part of the bulk, plus the renormalized area of a codimension-2 cosmic brane whose tension is related to the replica index. Renormalized Rényi entropy of odd-dimensional holographic CFTs can thus be obtained from the renormalized area of the brane with finite tension, including the effects of its backreaction on the bulk geometry. The area computation corresponds to an extremization problem for an enclosing surface that extends to the AdS boundary, where the newly defined renormalized volume is considered. © 2018, The Author(s).https://link.springer.com/article/10.1007%2FJHEP08%282018%2913
The Unruh Quantum Otto Engine
We introduce a quantum heat engine performing an Otto cycle by using the
thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been
established that the vacuum space, either near a black hole or for an
accelerated observer, behaves as a bath of thermal radiation. In this work, we
present a fully quantum Otto cycle, which relies on the Unruh effect for a
single quantum bit (qubit) in contact with quantum vacuum fluctuations. By
using the notions of quantum thermodynamics and perturbation theory we obtain
that the quantum vacuum can exchange heat and produce work on the qubit.
Moreover, we obtain the efficiency and derive the conditions to have both a
thermodynamic and a kinematic cycle in terms of the initial populations of the
excited state, which define a range of allowed accelerations for the Unruh
engine.Comment: 31 pages, 11 figure
A symmetry adapted approach to vibrational excitations in atomic clusters
An algebraic method especially suited to describe strongly anharmonic
vibrational spectra in molecules may be an appropriate framework to study
vibrational spectra of Na clusters, where nearly flat potential energy
surfaces and the appearance of close lying isomers have been reported. As an
illustration we describe the model and apply it to the Be, H, Be
and Na clusters.Comment: 8 pages with 2 tables, invited talk at `Atomic Nuclei & Metallic
Clusters: Finite Many-Fermion Systems', Prague, Czech Republic, September
1-5, 199
Comment on ``Boson-realization model for the vibrational spectra of tetrahedral molecules''
An algebraic model in terms of a local harmonic boson realization was
recently proposed to study molecular vibrational spectra [Zhong-Qi Ma et al.,
Phys. Rev. A 53, 2173 (1996)]. Because of the local nature of the bosons the
model has to deal with spurious degrees of freedom. An approach to eliminate
the latter from both the Hamiltonian and the basis was suggested. We show that
this procedure does not remove all spurious components from the Hamiltonian and
leads to a restricted set of interactions. We then propose a scheme in which
the physical Hamiltonian can be systematically constructed up to any order
without the need of imposing conditions on its matrix elements. In addition, we
show that this scheme corresponds to the harmonic limit of a symmetry adapted
algebraic approach based on U(2) algebras.Comment: 9 pages Revtex, submitted February 199
- …