149 research outputs found
Mechanism of insulin resistance in a rat model of kidney disease and the risk of developing type 2 diabetes.
International audienceChronic kidney disease is associated with homeostatic imbalances such as insulin resistance. However, the underlying mechanisms leading to these imbalances and whether they promote the development of type 2 diabetes is unknown. The effect of chronic kidney disease on insulin resistance was studied on two different rat strains. First, in a 5/6th nephrectomised Sprague-Dawley rat model of chronic kidney disease, we observed a correlation between the severity of chronic kidney disease and hyperglycemia as evaluated by serum fructosamine levels (p<0.0001). Further, glucose tolerance tests indicated an increase of 25% in glycemia in chronic kidney disease rats (p<0.0001) as compared to controls whereas insulin levels remained unchanged. We also observed modulation of glucose transporters expression in several tissues such as the liver (decrease of ≈40%, p≤0.01) and muscles (decrease of ≈29%, p≤0.05). Despite a significant reduction of ≈37% in insulin-dependent glucose uptake in the muscles of chronic kidney disease rats (p<0.0001), the development of type 2 diabetes was never observed. Second, in a rat model of metabolic syndrome (Zucker Leprfa/fa), chronic kidney disease caused a 50% increased fasting hyperglycemia (p<0.0001) and an exacerbated glycemic response (p<0.0001) during glucose challenge. Similar modulations of glucose transporters expression and glucose uptake were observed in the two models. However, 30% (p<0.05) of chronic kidney disease Zucker rats developed characteristics of type 2 diabetes. Thus, our results suggest that downregulation of GLUT4 in skeletal muscle may be associated with insulin resistance in chronic kidney disease and could lead to type 2 diabetes in predisposed animals
Ultraviolet Study of the Active Interacting Binary Star R Arae using Archival IUE Data
The eclipsing and strongly interacting binary star system R Arae (HD149730)
is in a very active and very short-lived stage of its evolution. R Ara consists
of a B9V primary and an unknown secondary. We have collected the International
Ultraviolet Explorer (IUE) archival data on R Ara, with most of the data being
studied for the first time. There are 117 high resolution IUE spectra taken in
1980, 1982, 1985, 1989, and 1991. We provide photometric and spectroscopic
evidence for mass transfer and propose a geometry for the accretion structure.
We use colour scale radial velocity plots to view the complicated behavior of
the blended absorption features and to distinguish the motions of hotter and
cooler regions within the system. We observed a primary eclipse of R Ara in
2008 and have verified that its period is increasing. A model of the system and
its evolutionary status is presented.Comment: 13 pages, 15 figures, accepted for publication in MNRA
I–II Loop Structural Determinants in the Gating and Surface Expression of Low Voltage-Activated Calcium Channels
The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for Cavβ subunits and plays significant roles in channel function, including trafficking the α1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (−30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3
Radio Astronomy
Contains table of contents and reports on seven research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space AdministrationJet Propulsion LaboratoryNASA/Goddard Space Flight Center (Grant NAG5-10)SM Systems and Research, Inc.U.S. Navy Office of Naval Research (Contract N00014-86-C-2114)Center for Advanced Television StudiesNASA/Goddard Space Flight Center (Grant NAG5-537
A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice
Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg−1 day−1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR
Radio Astronomy
Contains reports on nine research projects.National Science Foundation (Grant AST 86-17172)National Aeronautics and Space Administration (Contract NAS7-918)Jet Propulsion Laboratory (Contract 958048)U.S. Navy - Office of Naval Research (Contract N00014-84-C-2082)U.S. Navy - Office of Naval Research (Contract N00014-86-C-2114)SM Systems and Research, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Grant NAG5-10)Center for Advanced Television StudiesBrazil, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Grant 300.832-82)National Aeronautics and Space Administration/Goddard Space Flight Center (Grant NAG5-537
UGT1A1 is a major locus influencing bilirubin levels in African Americans
Total serum bilirubin is associated with several clinical outcomes, including cardiovascular disease, diabetes and drug metabolism. We conducted a genome-wide association study in 619 healthy unrelated African Americans in an attempt to replicate reported findings in Europeans and Asians and to identify novel loci influencing total serum bilirubin levels. We analyzed a dense panel of over two million genotyped and imputed SNPs in additive genetic models adjusting for age, sex, and the first two significant principal components from the sample covariance matrix of genotypes. Thirty-nine SNPs spanning a 78 kb region within the UGT1A1 displayed P-values <5 × 10−8. The lowest P-value was 1.7 × 10−22 for SNP rs887829. None of SNPs in the UGT1A1 remained statistically significant in conditional association analyses that adjusted for rs887829. In addition, SNP rs10929302 located in phenobarbital response enhancer module was significantly associated with bilirubin level with a P-value of 1.37 × 10−11; this enhancer module is believed to have a critical role in phenobarbital treatment of hyperbilirubinemia. Interestingly, the lead SNP, rs887829, is in strong linkage disequilibrium (LD) (r2≥0.74) with rs10929302. Taking advantage of the lower LD and shorter haplotypes in African-ancestry populations, we identified rs887829 as a more refined proxy for the causative variant influencing bilirubin levels. Also, we replicated the reported association between variants in SEMA3C and bilirubin levels. In summary, UGT1A1 is a major locus influencing bilirubin levels and the results of this study promise to contribute to understanding of the etiology and treatment of hyperbilirubinaemia in African-ancestry populations
Global Perspectives on Task Shifting and Task Sharing in Neurosurgery.
BACKGROUND: Neurosurgical task shifting and task sharing (TS/S), delegating clinical care to non-neurosurgeons, is ongoing in many hospital systems in which neurosurgeons are scarce. Although TS/S can increase access to treatment, it remains highly controversial. This survey investigated perceptions of neurosurgical TS/S to elucidate whether it is a permissible temporary solution to the global workforce deficit. METHODS: The survey was distributed to a convenience sample of individuals providing neurosurgical care. A digital survey link was distributed through electronic mailing lists of continental neurosurgical societies and various collectives, conference announcements, and social media platforms (July 2018-January 2019). Data were analyzed by descriptive statistics and univariate regression of Likert Scale scores. RESULTS: Survey respondents represented 105 of 194 World Health Organization member countries (54.1%; 391 respondents, 162 from high-income countries and 229 from low- and middle-income countries [LMICs]). The most agreed on statement was that task sharing is preferred to task shifting. There was broad consensus that both task shifting and task sharing should require competency-based evaluation, standardized training endorsed by governing organizations, and maintenance of certification. When perspectives were stratified by income class, LMICs were significantly more likely to agree that task shifting is professionally disruptive to traditional training, task sharing should be a priority where human resources are scarce, and to call for additional TS/S regulation, such as certification and formal consultation with a neurosurgeon (in person or electronic/telemedicine). CONCLUSIONS: Both LMIC and high-income countries agreed that task sharing should be prioritized over task shifting and that additional recommendations and regulations could enhance care. These data invite future discussions on policy and training programs
The Syk Kinase SmTK4 of Schistosoma mansoni Is Involved in the Regulation of Spermatogenesis and Oogenesis
The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6) acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes
- …